
��������� ��������� �� ��� ���������� �� �����, ������ 

���. 27 ��. 1, M����, 2022 

Contents |
Author index |
Subject index |
Search |
Home

Correlation and prediction of high-cost information retrieval
evaluation metrics using deep learning
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Prabha Rajagopal, and Prabhpreet Singh Sodhi

Introduction. To reduce cost of the evaluation of information retrieval systems, this study proposes
a method that employs deep learning to predict the precision evaluation metric. It also aims to show
why some of existing evaluation metrics correlate with each other while considering the varying
distributions of relevance assessments. It aims to ensure reproducibility of all the presented
experiments. 
Method. Using data from several test collections of the Text REetrieval Conference (TREC) we
show why some evaluation metrics correlate with each other, through mathematical intuitions. In
addition, regression models were used to investigate how the predictions of the evaluation metrics
are affected by queries or topics with variations of relevance assessments. Lastly, the proposed
prediction method employs deep learning. 
Analysis. We use coefficient of determination, Kendall's tau, Spearman and Pearson correlations. 
Results. This study showed that the proposed method performed better predictions than other
recently proposed methods in retrieval research. It also showed why the correlation exists between
precision and rank biased precision metrics, and why recall and average precision metrics have
reduced correlation when the cut-off depth increases. 
Conclusions. The proposed method and the justifications for the correlations between some pairs of
retrieval metrics will be valuable to researchers for the predictions of the evaluation metrics of
information retrieval systems.
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Information retrieval is finding documents that satisfy the user's information need from large document
collection (Manning et al., 2008). Users with the information need formulate a query and submit it to the
information retrieval system that accepts the query as input and produces a ranked list of documents. Ideally, the
ranked list should only contain relevant documents ordered according to their degree of relevance. In reality,
however, the situation is different. A query submitted to two information retrieval systems will not produce
identical ranked lists. This is because information retrieval systems differ in how they produce ranked lists. This
means that one information retrieval system may return a ranked list with more relevant documents than the
other. To find out which information retrieval system is better, there is need to evaluate them. In the field of
information retrieval, the popular approach to evaluate retrieval systems uses test collections. A test collection
comprises a corpus of documents, predefined topics (i.e., queries), and a query relevance file containing a set of
relevance judgments. For instance, in binary relevance settings, if a document is relevant to a topic, then there
would be an entry of one in the query relevance file for that topic, otherwise the entry would be zero. These
relevance judgments are manually generated by expert assessors. To evaluate a particular retrieval system, the
queries in the test collection are used by the retrieval system being evaluated to retrieve a set of documents.
These retrieved documents per query are compared against the relevance judgments entries in the query
relevance file in the test collection and the effectiveness of the evaluated retrieval system is determined
depending on how many relevant documents were actually retrieved by using appropriate evaluation metrics.

Though this evaluation approach has been used for decades, it still has several drawbacks. The most crucial
drawback is the cost of generating relevance judgments (Moghadasi et al., 2013) and this is largely due to the
manual generation of the relevance judgments. The aim of this study is to provide a proposal that contributes to
the reduction in the use of relevance judgments and consequently reduces the cost of these judgments. In
addition, this study aims to show why some correlations exist among evaluation metrics. Many correlations
between evaluation metrics have been identified in information retrieval research, but less attention has been
devoted to show why those correlations actually exist. In recent research (Gupta et al., 2019), a proposal was
made to reduce the cost of generating the relevance judgments through the prediction of the evaluation metrics at
the high cut-off depths of documents while using the evaluation metrics computed at the low cut-off depths. In
the same research, evaluation metrics computed at the cut-off thresholds of at least 100 documents were referred
to as the high-cost evaluation metrics. In our study, we adopt this naming of evaluation metrics. Much as this
proposal of predicting high-cost metrics is worthwhile, Gupta et al. reported that only the prediction of the rank
biased precision high-cost evaluation metric was accurate while using low-cost evaluation metrics computed at
the cut-off thresholds of up to thirty documents. At the same cut-off threshold (i.e., thirty documents) for the
low-cost evaluation metrics, the high-cost precision metric was worst predicted. Therefore, this study focuses on
the prediction of the high-cost precision metric using other metrics computed up to the maximum cut-off depth
of thirty documents. Further, researchers in information retrieval have reported several correlations between
evaluation metrics. However, justifications for most of these correlations are lacking. Hence, this study also fills
this gap by providing justifications of some of these correlations between the evaluation metrics. Furthermore,
this study also investigates the effect of the distributions of relevance assessments on the correlations of
evaluation metrics.

This study has four objectives:

1. To show why the correlation reported in the previous studies between precision and rank biased precision
metrics exists.

2. To show why the increase in the cut-off depth of documents leads to a reduced correlation between recall
and average precision.

3. To show the effect of the distributions of relevance assessments on the correlations of the rank biased
precision and the precision evaluation metrics as well as the correlations of the recall and average
precision evaluation metrics.

4. To present a method that employs the stacked generalization deep learning ensemble to predict the high-
cost precision metric in information retrieval evaluation.

Reproducibility has become a matter of concern in information retrieval research. Therefore, to enhance
reproducibility, a dedicated section has been included highlighting reproducibility issues and how they have



been addressed in the study.

The remaining part of this paper proceeds as follows. Section two presents related work. Section three presents
reproducibility in information retrieval evaluation; Section four presents the methodology of the study. Section
five presents the results and discussion, and section six presents the conclusion and future work.

Related work

This section describes prior work on correlations between information retrieval evaluation metrics and low-cost
information retrieval evaluation methods. Baccini et al. (2012) investigated the correlations between 130
measures using relevance judgments and runs from Text REetrieval Conference (TREC) (2-8). The authors used
principal component analysis and hierarchical clustering to group the measures into seven homogeneous
clusters. However, this study only considered binary relevance and lacked justifications for the observed
correlations among measures. Tague-Sutcliffe and Blustein (1995), analysed seven measures on TREC-3 and
their findings indicated average precision and R-precision are highly correlated. Aslam, Yilmaz and Pavlu
(2005) presented a geometric interpretation of R-precision and its correlation with average precision. Sakai
(2007), Thom and Scholer (2007) and Webber et al. (2008) also investigated the correlations of evaluation
measures. More recently, the study by Gupta et al. (2019) investigated the correlations of twenty-three
evaluation metrics using eight Web and Robust TREC tracks. All these investigations into correlations were
based on empirical observations of data. Our study complements this work by providing mathematical intuitions
for correlations between precision and rank biased precision as well as recall and average precision. Further, our
study presents a method for predicting high-cost precision metric as a solution to reduce costs in information
retrieval evaluation. Therefore, this literature review focuses on previous studies that investigated methods of
reducing costs in information retrieval evaluation.

Constructing test collections is costly, particularly in the human effort required to generate relevance judgments.
Prior research has investigated a variety of methods to reduce costs in the test collection model of system-based
information retrieval evaluation. These methods encompass inference of relevance judgments, finding the
documents to be judged per topic, topic selection, evaluation with no human judgments, development of
measures that are robust to incomplete relevance judgments, inference of evaluation metrics and, more recently,
crowdsourcing.

Several proposed methods exist for inferring relevance judgments. Aslam and Yilmaz (2007) proposed a method
that infers complete judgments given a few judged documents. The authors showed that the proposed method
produced inferred relevance judgments that evaluate systems in the same way as actual relevance judgments; the
relevance of documents in the inferred relevance judgments produced by the proposed method were very similar
to the actual relevance judgments from TREC. Rajagopal et al. (2014) proposed a method called the cut off
percentage which automatically generates relevance judgments. The authors reported that the greater the number
of occurrences of a document per topic in various TREC runs, the higher the possibility of the relevance of the
document. Besides, the proposed method uses a pool depth of 100 and a cut-off percentage of greater than 35 per
cent. The authors also showed that their method produced higher Kendall's tau correlations when compared with
the method proposed by Soboroff et al. (2001) on the same TREC tracks. Other studies (Büttcher et al., 2007;
Makary et al., 2017), also investigated the construction of relevance judgments without human assessors.

Some researchers have proposed methods for finding the best documents to be judged per topic in the process of
constructing relevance judgments. Zobel (1998) proposed a method for pooling that increases the number of
relevant documents found for judgment efforts. The author reported that though the method uses simple
regression that is approximate, it returned more relevant documents and this should increase the reliability of
measured results in large scale information retrieval experiments. In other research, Carterette and Allan (2005)
proposed a method that constructs relevance judgments through intelligently selecting documents to be judged
and decides when to stop document selection. The authors showed that the proposed method achieved high
Kendall's tau rank correlation with fewer relevance judgments when evaluating TREC ad hoc submissions.
However, the authors reported the lack of formal proofs for the proposed method and the need to investigate



better weighting schemes and stopping conditions. Other studies have also investigated the document selection
for judgment (Cormack et al., 1998; Carterette et al., 2006; Losada et al., 2017; Moffat et al., 2007).

A growing body of literature has investigated low-cost information retrieval evaluation through topic selection.
Carterette et al. (2008) proposed the usage of fewer relevance judgments in information retrieval evaluation. The
authors presented the results of the Million track of TREC 2007 and investigated the trade-offs between the
number of queries and the number of judgments. Their findings showed the cost-effectiveness of the evaluation
over more queries with few judgments was equally as reliable as fewer queries with more judgments. They also
reported that total assessor effort could be reduced by 95% without a notable increase in evaluation errors.
Hosseini et al. (2012) proposed an uncertainty aware query selection model for evaluation of information
retrieval systems commonly referred to as adaptive. The authors showed that the queries chosen by this model
produced reliable performance ranking of systems. They also showed that the ranking produced by their model
correlates better with the actual system rankings than the rankings produced by queries selected using the
considered baseline methods. However, the authors only considered the uncertainty of the system's performance
due to partial relevance judgments and errors in the relevance judgments that the human assessors made.
Therefore, other sources of uncertainty could be further explored. Other studies to investigate the topic selection
method include Berto et al. (2013), Guiver et al. (2009), Hosseini et al. (2011), Kutlu et al. (2018), Rahman et al.
(2019), Roitero et al. (2019), and Sanderson and Zobel (2005). ; Interested readers are referred to a
comprehensive review of low-cost information retrieval evaluation methods conducted by Moghadasi et al.
(2013).

Various studies investigated the estimation of the evaluation metrics in information retrieval evaluation. Aslam
et al. (2005) proposed a method that estimates evaluation measures using a corresponding retrieved ranked list.
The authors concluded that user-oriented measures such as precision can be inferred from system-oriented
measures such as average precision and R-precision. Ravana et al. (2009) proposed an exponential smoothing
estimation method which combines the result of a previous information retrieval evaluation experiment with a
new observation to estimate a reliable system score. In another study, Yilmaz and Aslam (2008) proposed the
inferred average precision measure that accurately estimates average precision when judgments are not
complete. More recently, Gupta et al. (2019) proposed the prediction and ranking methods of evaluation metrics
in information retrieval. The authors analysed the correlation between twenty-three information retrieval metrics
and used a simple linear regression model to show that an accurate prediction of an evaluation metric can be
achieved using only two or three other metrics. Additionally, the authors proposed a method that uses a linear
regression model to predict the high-cost evaluation metrics using lower-cost ones. Furthermore, the authors
introduced a novel ranking method that is based on covariance for ranking top metrics which enables the
selection of best metrics from clusters with lower time and space complexity than required by prior work.
However, using other metrics as features computed at the cut-off depth of thirty, this method made an accurate
prediction for the high-cost rank biased precision metric only and the study lacked justifications for the
correlations between the reported twenty-three information retrieval evaluation metrics. Therefore, our study
complements the research by Gupta et al. (2019) in various ways. Firstly, we provide justifications of
correlations between some information retrieval evaluation metrics, investigate how the predictions of the high-
cost evaluation metrics are affected by the difficulty of topics (this difficulty of topics is largely due to variations
of relevance assessments in test collections), and propose an effective method for predicting the high-cost
precision evaluation metric using deep learning.

Reproducibility in information retrieval evaluation

Reproducibility refers to the ability of the research community to repeat prior work of other researchers with
intent to validate the reported scientific results. The results produced after the reproducibility effort can be used
to compare with other new approaches (and the reproduced work is further tested on other platforms and using
different datasets to check the robustness of the methods in prior work (Fuhr, 2018). In information retrieval
evaluation, reproducibility has become a matter of concern, and this has led to reproducibility tracks in
information retrieval conferences such as the European Conference of Information Retrieval. In information
retrieval evaluation, there are several barriers to reproducibility and the first barrier concerns data accessibility.



This barrier mostly affects studies where the data that has been used is proprietary and inaccessible to the
research community (Ferro et al., 2016). Also, for retrieval evaluation experiments where the development of
private test collections is a requirement, the processes involved in the build of the test collections are usually not
well documented. The second barrier concerns the lack of availability of the implementations of the experiments
in the prior work and this might lead to the failure of the reproducibility efforts (Papariello et al., 2020). Also,
the proposed methods in the prior work may not have been adequately described. The last barrier is the size of
the test collections which are large and require significant storage and computation resources (Ferro et al., 2016).

To address the barrier of data accessibility, our study employs test collections from the TREC and these are the
mostly used test collections for the information retrieval evaluation research. Secondly, our study has provided
the clear procedures of how the evaluation metrics were computed at the various evaluation depths of
documents. To address the barrier of the lack of implementations of experiments, code has been provided for the
experiments reported in this study to ensure easy reproducibility of the results (Muwanei, 2021). Concerning the
barrier of inadequate descriptions of proposed methods, this study provides detailed experimental procedures for
all the experiments conducted. Lastly, regarding the size of the test collections, this barrier does not concern this
study as only runs and relevance judgments are of interest and these usually have the size range of several
hundred megabytes of data.

Research method

This section covers the methodology followed when investigating the correlations of the evaluation metrics and
the methodology followed when investigating the predictions of high-cost precision evaluation metrics.

Research method for investigating correlations of information retrieval evaluation metrics

This study investigated the correlations between the precision and rank biased precision as well as recall and
average precision. Gupta et al. (2019) established the existence of the correlation between precision and rank
biased precision metrics, though the observed correlations were not justified. Also, justification has so far not
been provided for the reduced correlations between recall and average precision when the cut-off depth
increases. Furthermore, the question concerning distributions of the relevance assessments and their effects on
the correlations of these evaluation metrics has not yet been answered. Therefore, firstly, the justification is
provided using mathematical intuitions for the existence of the correlation between the precision and rank biased
precision metrics. In addition, a mathematical intuition is also provided which shows why recall and average
precision have reduced correlation when the cut-off depth increases. In both justifications of the correlations of
the pairs of evaluation metrics, the mathematical intuitions also comprise detailed investigations of the
behaviour of functions representing these metrics. To validate the mathematical intuitions, the Pearson
correlations are computed for the pairs of metrics using TREC 2000 data. These mathematical intuitions and
computed correlations are explained in the results and discussion section below.

Secondly, the effects of the distributions of the relevance assessments on the correlations of these pairs of
evaluation metrics are investigated. To achieve this, an experimental procedure is employed that uses the
clustering approach of the topic scores of evaluation metrics and this procedure is outlined in the following six
steps:

1. Compute the topic scores for the rank biased precision, precision, recall and average precision evaluation
metrics. The result of this step is a set of topic scores of the highlighted evaluation metrics computed at
the cut-off depths ranging between ten and 100 documents.

2. For each run in the test collection of interest, compute at various evaluation depths, the proportion of
unjudged documents returned for every represented topic in the test collection. The result of this step are
sets that show proportions of relevance assessments for each run per topic in the test collection.

3. In this step, append the results of step 1 to the results of step 2. The result of this step is a set containing
the topic scores of the rank biased precision, precision, recall and average precision metrics as well as
proportions of relevance assessments for each run per topic.



4. In this step, create two samples of topic scores of evaluation metrics. These samples are based on the
proportions of relevance assessments for each run per topic in the test collection. The first sample has
between 0 and 50 per cent of the returned documents in the run per topic not present in the query
relevance file, while the other sample has between 50 and 100 per cent of the returned documents in the
run per topic not present in the query relevance file. Therefore, the outputs of this step are samples of topic
scores with varying represented proportions of relevance assessments.

5. Using the samples of topic scores of evaluation metrics generated from the previous step, compute
Pearson correlations for each pair of the evaluation metrics under investigation.

6. Compare the results from the previous step and identify any trends as regards the correlations of the pairs
of evaluation metrics in the two samples.

Research method for the predictions of information retrieval evaluation metrics

For the prediction task, runs and relevance judgments of selected TREC tracks were the collected data, which
was later prepared and used to generate training and test data sets. The development of the proposed method that
employs the stacked generalization deep learning ensemble to predict the high-cost precision metric using other
metrics computed at the lower cut-off depths proceeded in phases. These phases are: node analysis, layer
analysis, ensemble analysis, creation of the method with stacked ensembles fitted on the training set,
computation of the coefficient of determination, Kendall's tau and Spearman correlations on test sets and
performance analysis. In addition, the keras framework was used for the implementation due to its ease of use
hence promoting reproducibility of experiments. The following subsections describe the details of the
methodology.

Data collection

The data collected for this research is in the form of runs and relevance judgments from several Web and Robust
tracks of TREC. TREC is a series of workshops organised by the National Institute of Standards and Technology
focusing on research in information retrieval. Annually, TREC focuses on specific research areas or tracks. In
this research, selected Web and Robust track relevance judgments and runs were used from TREC tracks listed
in Table 1.

Table 1: List of test collections

Test collection Year Purpose Document
collection

Number
of

systems
Topics

Web Track 2000
(Voorhees and Harman,

2000)
2000 To create a test collection that mimics the

environment of the World Wide Web WT10g 105 451-
500

Web Track 2001
(Voorhees and Harman,

2001)
2001

To investigate the retrieval behaviour when the
collection being searched is a large hyperlinked

structure like World Wide Web.
WT10g 97 501-

550

Robust Track 2004
(Voorhees, 2004) 2004 To improve the consistency of ad hoc retrieval task

by focusing on poorly performing topics
Trec Discs

4&5 110

301-
450
601-
700

Web Track 2012
(Clarke, Craswell and

Voorhees, 2012)
2012 To examine and assess Web retrieval on large

collections of Web data ClueWeb’09 48 151-
200

Web Track 2013
(Collins-Thompson et

al., 2013)
2013 To examine and assess Web retrieval on large

collections of Web data ClueWeb’12 59 201-
250



Dataset preparation

The information retrieval evaluation metrics computed at various cut-off depths were used features. An
information retrieval evaluation metric measures the capability of a retrieval system to return relevant
documents. Similar to Gupta et al. (2019), the metrics used in this study are: precision, inferred average
precision (Yilmaz and Aslam, 2008), expected reciprocal rank (Chapelle et al., 2009), binary preference
(Buckley and Voorhees, 2004), non-cumulative discounted gain (Järvelin and Kekäläinen, 2002) and rank biased
precision (Moffat and Zobel, 2008). The choice of metrics was driven by their robustness to incomplete
judgments in the test collections and previous studies that investigated their respective correlations. This study
also included recall, F-measure and Rprecision due to their high correlation with the high-cost precision metric
on the data set. For each of these metrics, topic and system scores were computed at the cut-off depths ranging
from ten to thirty using the trec_eval package from TREC and the rank biased precision package from the
authors. Also, the high-cost precision metric was computed at the cut-off depths of 100, 500 and 1000. Table 2
below shows the information retrieval evaluation metrics and the cut-off depths at which they were computed.

 
Table 2: Information retrieval evaluation metrics used in the study

No. Metric Formula Reference Depth

1 Precision(P) (Manning et
al., 2008)

10,15,20,25,30,
100, 500, 1000

2
Rank biased

precision
(RBP)

(Moffat and
Zobel,
2008)

10,15,20,25,30

3
Expected
reciprocal
rank(ERR)

(Chapelle et
al., 2009) 10,15,20,25,30

4

Non-
cumulative
discounted

gain (nDCG)

(Järvelin
and

Kekäläinen,
2002)

10,15,20,25,30

5

Inferred
average

precision
(infAP)

(Yilmaz and
Aslam,
2006)

10,15,20,25,30

6 RPrecision (Manning et
al., 2008) 10,15,20,25,30

7 Fmeasure  10,15,20,25,30

8 Recall (Manning et 10,15,20,25,30



al., 2008)

9
Binary

preference
(bpref)

(Buckley
and

Voorhees,
2004)

10,15,20,25,30

Generation of training and test sets

After the computation of evaluation metrics for the chosen TREC runs, topic and system data sets were
generated comprising of topic and system scores respectively. Training data sets comprised topic and system
scores computed from TREC 2000, 2001 and 2004 data. Test data sets comprised topic and system scores
computed from TREC 2012 and 2013 data. Topic data sets were used with the proposed method. Similar to
previous research, the system data sets were used with the baseline method. The procedure for generating the
topic and system data sets included segmentation of data by TREC tracks, data cleaning which involved the
removal of duplicate runs and suspicious zero values in the generated data sets. Table 3 below lists the features
and TREC tracks used for generating the training and test sets.

Table 3: Features of training and test sets

Features Trec Dataset
type

ERR@10, P@10, P@100, P@500, P@1000, nDCG@10, infAP@10, RBP@10,
bpref@10, R@10, Rprec@10, F-Measure@10, ERR@15, P@15, nDCG@15,
infAP@15, RBP@15, bpref@15, R@15, Rprec@15, F-Measure@15, ERR@20, P@20,
nDCG@20, infAP@20, RBP@20, bpref@20, R@20, Rprec@20, F-Measure@20,
ERR@25, P@25, nDCG@25, infAP@25, RBP@25, bpref@25, R@25, Rprec@25, F-
Measure@25, ERR@30, P@30, nDCG@30, infAP@30, RBP@30, bpref@30, R@30,
Rprec@30, F-Measure@30

TREC 2000 -
Web Track,

TREC 2001 -
Web Track,

TREC 2004 -
Robust Track

Training

TREC 2012 -
Web Track

Test -
2012

TREC 2013 -
Web Track

Test -
2013

Node analysis

In this phase, an initial deep learning model was created and a grid search was performed to find the number of
nodes at which it performed best. This was performed at each of the cut-off depths for features ranging from ten
to thirty and the high-cost precision metric with cut-off depths of 100, 500 and 1000 respectively. The findings
were that at eleven nodes, the model generated the least mean square error for each depth, hence its choice for
the method. The mean square error is an average difference between the expected and the actual values of the
target variable in the data set.

Layer analysis

In this phase, using the initial deep learning model with eleven nodes, a grid search was performed to find the
number of layers at which the deep learning model performed best. This was performed at each of the cut-off
depths for features ranging from ten to thirty and the high-cost precision metric with cut-off depths of 100, 500
and 1000 respectively. The findings were that from nine hidden layers onwards, the least mean square error was
observed for each depth, hence it's choice for the proposed method.



Ensemble analysis

In this phase, using the initial deep learning model with eleven nodes and nine hidden layers, a grid search was
performed to find the number of models to form a stacked generalization deep learning ensemble that could
predict the high-cost precision metric with least mean square error. It was found that with the increase in the
number of models in the ensemble, the mean square error kept reducing and with five models in the ensemble,
the mean square error was least compared to ensembles comprised of fewer models. For ensembles with more
than five models, small performance differences were observed when compared with ensemble with five models.
Therefore, five models in the ensemble were chosen to be used at every depth of high-cost precision metric
prediction.

Method build

Using the findings of the node, layer and ensemble analysis described in the previous subsections, a method was
developed that employs the deep learning ensemble to predict the high-cost precision metric at the cut-off depths
of 100, 500 and 1000 respectively using other metrics as features computed at depths ranging from 10 to 30. The
flowchart showing steps for the proposed method is shown in Figure 1 below.

Figure 1: Flowchart showing steps of the proposed method. DL model represents the deep learning
model used in the proposed method.

Note: T represents a list of test datasets. HCM represents the list of high-cost metrics that were being
predicted. p100 means precision@100,p500 means precision@500 and p1000 means precision@1000.
Depth represents cut-off depths at which features were computed. Z represents subsets of features based
on the depths at which they were being computed. X represents the training dataset and variables i, j and y
were used in the various iterations in the proposed method.

In this method, the stacked generalization deep learning ensemble is fit with subsets of features that were
computed at depths ranging from ten to thirty documents. For each of the cut-off depths, the method predicts the



high-cost precision metric at depths of 100, 500 and 1000 respectively. Using these predicted values, correlation
coefficients and coefficient of determination listed below were computed for all the test cases.

Performance evaluation

The Kendall's tau, Spearman correlations, and coefficient of determination were chosen for performance
evaluation of the proposed method. Similar to previous research, the correlation coefficients were used to
measure the correlations in rankings based on the predicted scores. The coefficient of determination was used to
measure the accuracy of the predicted scores of the high-cost precision metrics. Results are presented in Figures
2 to 4, and Tables 6 to 8. In addition, the difference in the performance between the proposed and baseline
methods have been computed using the following proposed equation definitions (1) and (2) below:

Where Percentage_Diff_tau@k is the percent difference between the Kendall’s tau ranked correlations of the
predictions of the proposed and the baseline methods. The tau_proposed@k is the Kendall’s tau ranked
correlation of the prediction of the proposed method and tau_baseline is the Kendall’s tau ranked correlation of
the prediction of the baseline method. k is the cut-off depth of low-cost evaluation metrics.

Where Percentage_Diff_sp@k is the percent difference between the Spearman ranked correlations of the
predictions of the proposed and the baseline methods. The sp_proposed@k is the Spearman ranked correlation
of the prediction of the proposed method and sp_baseline@k is the Spearman ranked correlation of the
prediction of the baseline method. k is the cut-off depth of low-cost evaluation metrics.

Results and discussion

This section presents the results and discusses the mathematical intuitions for the correlations of information
retrieval evaluation metrics and the proposed method that predicts the high-cost information retrieval evaluation
precision metric at the cut-off depths of 100, 500 and 1000. The results of the proposed method are compared
with those for the baseline method proposed by Gupta et al. (2019).

Results for the correlations of information retrieval evaluation metrics

This section presents the results of the correlations of the information retrieval evaluation metrics and begins
with the mathematical intuition showing why the correlation exists between the precision and the rank biased
precision evaluation metrics.

Precision and rank biased precision

Gupta et al. (2019) showed that precision@10 and precision@20 are mostly correlated with rank biased
precision. We present a mathematical intuition that shows why there is a correlation between precision and rank
biased precision. To explain the correlation further, the Pearson correlation of the metrics is highlighted using
TREC 2000 data. For this intuition, it is assumed that the relevance score is binary and both the precision and
the rank biased precision metrics have correlations investigated at similar depths.

Given the precision metric P, at the cut-off depth of k, defined as:



Where ri is the relevance score of the i-th document retrieved as ri . The relevance score ri=1 for a relevant
document and ri=0 for a non-relevant document.

Now, for a rank biased precision evaluated at similar depth on the same system with parameter p, we have from
its definition as:

Where ri is the relevance score of the i-th document retrieved as ri. The relevance score ri=1 for a relevant
document and ri=0 for a non-relevant document. In addition, p the persistent parameter shows the probability
that user’s progress from one document to the next in the ranked list. Hence, users end examination of a ranked
list with probability (1-p).

We now analyse the correlation between P@k and RBP@k when the parameter p->1 (i.e., a very high value of
p). 
Suppose in equation (4) p ->1 ⇒ (1-p) ≈ a and p(i-1)≈1 for all i, Since p is a constant and p-> 1, let a =(1-p)be a
small constant.

Consequently,

Since p(i-1) ≈ 1 and (1-p) ≈ a We have,

The outcome a ⁄ k is a constant. This implies that P@k and RBP@k are linearly related, which thereby implies
that the two metrics have a Pearson Correlation Coefficient of 1, which indicates a very high correlation. Also,
note that for a given p, as k increases to large values, the approximation p(i-1) ≈ 1 becomes less and less
appropriate. Therefore, for a given p, the correlation is higher at lower depths. Hence, the above mathematical
procedure provides a good intuition as to why RBP@k and P@k have high correlations at higher values of p and
lower values of k.

 
Table 4: Pearson correlation of precision versus rank



biased precision metrics at ranks from 10 to 1000 using
TREC2000 Web track.

Depth
Rank Biased Precision Persistent Parameter, P

0.7 0.8 0.85 0.90 0.95
10 0.910846 0.954662 0.972629 0.986353 0.995012
20 0.833040 0.898998 0.934242 0.966631 0.990122
30 0.786663 0.856523 0.898464 0.943204 0.982329
50 0.720361 0.791231 0.837232 0.894192 0.960719
100 0.632424 0.702202 0.749689 0.813191 0.907332
1000 0.484015 0.547582 0.592417 0.655291 0.758912

Table 4 presents Pearson correlation values for the precision and rank biased precision metrics. The cut-off
depths at which the metrics were computed range from ten to 1000 and the persistent parameter for the rank
biased precision range from 0.7 to 0.95. Since the persistent parameter is a probability, its value lies between 0
and 1. It is clear from these Pearson correlation values, that as the persistent parameter approaches 1, there is
higher Pearson correlation between P and RBP, which is in line with the intuition presented in this subsection.

Recall and average precision

The investigation of the correlation between average precision and recall showed that the correlation between
these two metrics decreases as the depth of evaluation increases. A mathematical explanation to give the same
intuition to the reader is presented. Consider a similar system of binary relevance evaluated at depth k, where the
relevance score of the i-th document retrieved is denoted by ri

Given the average precision metric at the cut-off depth of k defined as:

and the recall metric also at the cut-off depth of k defined as:

First, let us consider the case when the evaluation depth k = 1. Then,

Similarly,

Clearly, AP@1=Recall@1 (independent of the retrieval system used).

This constant linear relationship between AP@1 and Recall@1 implies a very high Pearson correlation
coefficient of 1 at k=1.



Now, consider the case when k =2. Here:

And

It is clear from equations (11) and (12) that the two evaluation metrics deviate from their linear relationship, and
the relationship becomes dependent on the relevance of the documents retrieved by each system.

Suppose we calculate the correlation between AP and Recall using the performance of N systems. The
correlation is always 1 for depth k=1. This is because at k=1 if a system s1 has Recall@1=0, the AP@1 will also
be equal to 0. Similarly, if a system s2 has Recall@1 = (1/R), the AP@1 will also be equal to (1/R). The set of
points of the ordered pair (Recall, AP) obtained can be {(0,0), (1/R, 1/R)} which satisfy a linear relationship,
indicate a very high correlation of 1.

Now for k=2, the set of possible points of the ordered pair (Recall, AP) becomes {(0, 0), (1/R, 1/R), (1/R, 1/2R),
(2/R, 3/2R)}. Clearly, a strictly linear relationship is possible only if all of the N systems happen to be producing
at most 2 of the above possible set of points, the probability for which is clearly less than the previous case
(k=1).

With an increase in the value of n, the expressions involve a greater number of dependence on the actual
documents retrieved by the system which leads to greater variability in the association between the two metrics.
Therefore, the probabilistic possibility of a linear dependence between the data plotted for Recall and AP
decreases further and further. This explanation gives an intuition as to why the Pearson correlation between
Recall and AP decreases with the increase in the evaluation depth k.

 
Table 5: Pearson correlation of recall versus average precision metrics at

ranks from 10 to 1000 using TREC2000 Web track.
n 10 20 30 50 100 1000

Correlation r 0.903613 0.870689 0.852809 0.825346 0.777086 0.617946

Table 5 presents the Pearson correlation values for the recall and average precision metrics. The cut-off depths at
which the metrics were computed range from ten to 1000. The strongest correlation is observed at lower cut-off
depths. This is easily explained using the presented intuition above. It was shown above that at rank 1, the
correlation was strongest (i.e., equal to 1) since the two metrics had the same values. However, starting from
rank 2, different expressions are added to the two metrics during computations and this leads to drifts between
them. Also, it was shown that at rank 2, to average precision is added r2/2 and to recall is added r2. As the cut-
off depth increases, the more the expressions are added and the lower, the correlation becomes between the two
metrics. That is why for instance at rank 10 in Table 5, there is a higher correlation (0.903613) than all ranks
greater than 10.

Results for the effect of the distributions of relevance assessments on the correlations of the information
retrieval evaluation metrics

This section presents the results of the effect of the variations of relevance assessments on the Pearson
correlations of the precision and the rank biased precision evaluation metrics as well as the Pearson correlations
of the recall and the average precision evaluation metrics.



Figure 2 below shows the results of the Pearson correlations of the rank biased precision, precision, recall and
average precision evaluation metrics using samples of topic scores with varied proportions of relevance
assessments computed using TREC 2000 Web Track. As seen from Figure 2, there are two samples of topic
scores used. Sample 1 comprises topic scores of the evaluation metrics and topics with varied relevance
assessments such that between 0 and 50 per cent of the returned documents in the represented runs per topic
were not present in the query relevance file of the test collection. while Sample 2 comprises topic scores of the
evaluation metrics and topics with varied relevance assessments such that between 50 and 100 per cent of the
returned documents in the represented runs per topic were not present in the query relevance file of the test
collection. This means that Sample 1 comprises topic scores computed using more relevance assessments from
the query relevance file than Sample 2.

Figure 2: Pearson correlations of the rank biased precision, precision, recall and average precision
evaluation metrics using samples of topic scores with varied proportions of relevance assessments
computed using TREC 2000 Web Track.

Concerning the rank biased precision and precision pair of evaluation metrics, the result shows that the Pearson
correlation computed using Sample 1 was higher than the Pearson correlation computed using Sample 2 on all
the evaluation depths of documents. For instance, at the evaluation depth of twenty documents, the Pearson
correlation using Sample 1(0.9898) was higher than the Pearson correlation using Sample 2(0.9309) by 5.32 per
cent.

Regarding the recall and average precision pair of evaluation metrics, the result also shows that the Pearson
correlation computed using Sample 1 was better than the Pearson correlation computed using Sample 2 on all
the evaluation depths of documents. For instance, at the evaluation depth of 100 documents, the Pearson
correlation using Sample 1(0.7637) was better than the Pearson correlation using Sample 2(0.6756) by 8.81 per
cent.

The above result leads us to conclude that when there are more relevance assessments in the sample of topic
scores of evaluations metrics, the Pearson correlation values in the experiments tend to be higher in the case of
the evaluation depths of up to 100 documents. Further, the result validates the presented mathematical intuitions
in that the Pearson correlation results for both pairs of evaluation metrics on the two samples shows the similar
trend as observed in Tables 1 and 2 where the Pearson correlations tend to be higher at the lower evaluation
depths but tend to gradually decrease towards the higher evaluation depths of documents.

Results for the prediction of the high-cost precision metric

We present here the results and discussion of the prediction of the high-cost precision metric at the cut-off depths
of 100, 500 and 1000. The cut-off depths at which the features (low-cost metrics) were computed ranged from
ten to thirty. The Kendall's tau and Spearman correlation results are presented first, followed by the coefficient
of determination. Further, the results obtained by the proposed method are compared with those for the baseline
method proposed by Gupta et al. (2019). The training dataset was generated from TREC 2000 and TREC 2001
Web tracks, as well as TREC 2004 robust track. In addition, the test data sets were generated from TREC 2012
and TREC 2013 Web tracks.



Results for the prediction of precision@1000

Figure 3 presents Kendall's tau and Spearman correlations of both proposed and baseline methods for the
prediction of precision@1000. The other metrics, which were features, were computed at the cut-off depths
ranging from ten to thirty.

Figure 3: Kendall’s tau and Spearman correlation values of methods for prediction of
precision@1000  
Note: A test data were from TREC 2012 and B test data were from TREC 2013.

Figure 3 illustrates the results of Kendall's tau and Spearman correlations of both baseline and proposed methods
for the prediction of precision@1000 using the test datasets generated from TREC 2012 and TREC 2013 data.
Figure 3(A) shows results when TREC 2012 data is used, while fig. 3(B) shows results when TREC 2013 data is
used. In both cases, features were computed at the cut-off depths ranging from ten to thirty.

In Figure 3(A), the result shows that the proposed method had better performance than its baseline on all the cut-
off depths at which features were computed because of its higher Kendall's tau and Spearman correlations. Using
the results shown in Figure 3 above, the extent to which the proposed method performed better than the baseline
concerning the Kendall’s tau and Spearman ranked correlations was computed using equations (1) and (2)
respectively. For instance, at the cut-off depth of twenty-five, the proposed method’s Kendall's tau and Spearman
correlation values were higher by 35.0 per cent and 36.2 per cent respectively. At the cut-off depth of thirty, the
proposed method’s Kendall's tau (0.63020) and Spearman (0.822030) correlations were higher than the baseline
by 17.0 per cent and 19.3 per cent respectively. A similar trend can be seen from Figure 3 (B), where the
proposed method also performed better than its baseline on all the depths of features because of its superior
Kendall's tau and Spearman correlations. When compared to its baseline at the depth of twenty, the proposed
method’s Kendall's tau and Spearman correlation values were higher by 46.4 per cent and 34.7 per cent
respectively.

Table 6 shows the values of the coefficient of determination following the prediction of precision@1000 by the
proposed and the baseline methods using test data sets generated from TREC 2012 and TREC 2013 Web track
data.

Table 6: Coefficient of determination obtained on the prediction of
precision@1000 by the proposed and baseline methods using test
data sets generated from TREC 2012 and TREC 2013 Web tracks

Method Depth R-Squared-TREC 2012 R-Squared-TREC 2013
Baseline 10 -1.187400 -1.342262

15 -1.052810 -0.751991



20 -0.916083 -0.538088
25 -0.564947 -1.952770
30 -0.194158 0.065768

Proposed

10 -0.202506 0.266719
15 -0.207175 0.216056
20 -0.370490 -0.018994
25 -0.369697 0.107549
30 -0.184796 0.275984

A close inspection of the results shown in Table 6 highlights the supremacy of the predictive accuracy of the
proposed method over the baseline method on most of the cut-off depths at which features were computed. For
instance, at the cut-off depth of features of thirty for TREC 2012 data, the coefficient of determination for the
proposed method was higher than the baseline method by above 4.8 per cent. Further, the results also show that
as the cut-off depth of at which features were computed increases, the coefficient of determination for both
methods increases.

Results for prediction of precision@500

Figure 4 shows Kendall’s tau and Spearman correlations of both proposed and baseline methods for the
prediction of precision@500. The other metrics that were features were computed at the cut-off depths ranging
from ten to thirty.

Figure 4: Kendall’s Tau and Spearman Correlation Values of Methods for Prediction of
Precision@500 
Note: A test data were from TREC 2012 and B test data were from TREC 2013.

Figure 4 provides the results of Kendall’s tau and Spearman correlations of both proposed and baseline methods
for the prediction of precision@500 using the test data sets generated from TREC 2012 and TREC 2013 data.
Figure 4(A) shows results when TREC 2012 data is used, while Figure 4(B) shows results when TREC 2013
data is used. In both cases, features were computed at the cut-off depths ranging from ten to thirty. It is clear
from Figure 4(A), that the proposed method is better than its baseline on all the cut-off depths of features due to
its higher Kendall’s tau and Spearman correlations. For example, at the cut-off depth of thirty, the proposed
method’s Kendall’s tau and Spearman correlation values were higher by 14.6 per cent and 16.2 per cent
respectively. Furthermore, it is apparent from Figure 4(B) that the proposed method also performed better than
its baseline on all the depths of features due to its superior Kendall’s tau and Spearman correlations. When
compared to its baseline at the depth of twenty, the proposed method’s Kendall’s tau and Spearman correlation
values were higher by 42.4 per cent and 29.9 per cent respectively. Table 7 provides the values of the coefficient
of determination following the prediction of precision@500 by the proposed and the baseline methods using test
data sets generated from TREC 2012 and TREC 2013 Web track data.



Table 7: Coefficient of determination obtained on the prediction of
precision@500 by the proposed and baseline methods using test data

sets generated from TREC 2012 and TREC 2013 Web tracks
Method Depth R-Squared-TREC 2012 R-Squared-TREC 2013

Baseline

10 -0.423433 -0.364781
15 -0.322298 -0.036684
20 -0.241708 0.105773
25 0.033048 0.269949
30 0.183039 0.342159

Proposed

10 0.095055 0.385867
15 -0.054908 0.273776
20 -0.107077 0.153814
25 -0.172268 0.234604
30 0.012593 0.402813

A look at the results displayed in Table 7 shows the supremacy of the predictive accuracy of the proposed
method over the baseline method on most of the cut-off depth of features. For instance, at the cut-off depth of
features of thirty for TREC2013 data, the coefficient of determination for the proposed method was higher than
the baseline method by 17.7 per cent. The same trend is observed on TREC 2012 where the cut-off depth is less
than 25. Further, the results show that as the cut-off depth of features increases, the coefficient of determination
for both methods increases. Comparing data in this table with Table 6 reveals that the greater the cut-off depth of
the predicted high-cost precision metric, the less the predictive accuracy of the method. In addition, for both
methods, the predictive accuracy increases with the increase in the cut-off depth at which the features were
computed, though decreases with the increase in the cut-off depth of the high-cost precision metric.

Results for prediction of precision@100

Figure 5 presents Kendall's tau and Spearman correlations of both proposed and baseline methods for the
prediction of precision@100. The other metrics that were features were computed at the cut-off depths ranging
from ten to thirty.

Figure 5: Kendall’s Tau and Spearman Correlation Values of Methods for Prediction of
Precision@100  
Note: A test data were from TREC 2012 and B test data were from TREC 2013.



Figure 5 provides the results of Kendall's tau and Spearman correlations of both proposed and baseline methods
for the prediction of precision@100 using the test data sets generated from TREC 2012 and TREC 2013 data.
Figure 5(A) shows results when TREC 2012 data is used, while Figure 5(B) shows results when TREC 2013
data is used. In both cases, features were computed at the cut-off depths ranging from ten to thirty. In Figure
5(B), the result shows that the proposed method is superior over its baseline on all the cut-off depths of features
because of its higher Kendall's tau and Spearman correlations. For instance, at the cut-off depth of thirty, the
proposed method’s Kendall's tau (0.8049) and Spearman (0.9416) correlations were higher than the baseline by
21.0 per cent and 9.1 per cent respectively. Also, as can be seen from Figure 5(A), the proposed method
performed better than its baseline on the cut-off depth of thirty and twenty on TREC 2012 data. Table 8 presents
the values of the coefficient of determination following the prediction of precision@100 by the proposed and the
baseline methods using test data sets generated from TREC 2012 and TREC 2013 Web track data.

Table 8: Coefficient of determination obtained following the
prediction of precision@100 by the proposed and baseline methods

using test data sets generated from TREC 2012 and TREC 2013
Web tracks

Method Depth R-Squared-TREC 2012 R-Squared-TREC 2013

Baseline

10 0.725232 0.364191
15 0.627067 0.524858
20 0.682360 0.594896
25 0.730939 0.669583
30 0.804948 0.722241

Proposed

10 0.562821 0.551175
15 0.631095 0.648645
20 0.638844 0.689969
25 0.647587 0.714961
30 0.697310 0.797089

In Table 8, it is apparent that the predictive accuracy of the proposed method is higher than the baseline due to
the higher coefficient of determination on the data set generated from TREC 2013 data. At the cut-off depth of
ten of features, the result shows that the coefficient of determination for the proposed method (0.551175) was
higher than the one for the baseline method (0.364191) for TREC2013. Nevertheless, the baseline method
performed well on several cut-off depths at which features were computed on TREC 2012 data.

In summary, comparing results shown in figures and tables above, it is clear that the greater the cut-off depth of
the high-cost precision metric being predicted, the less the predictive accuracy of the proposed and baseline
methods. Also, for both methods, the predictive accuracy increases with the increase in the cut-off depth at
which the features were computed, though decreases with the increase in the cut-off depth of the high-cost
precision metric. This confirms the results of the research by Gupta et al. (2019).

Conclusion

As a way of reducing costs in information retrieval evaluation, this study has proposed a method to predict the
high-cost precision evaluation metrics at the cut-off depths of 100, 500 and 1000 using other evaluation metrics
computed at the lower cut-off depths ranging from ten to thirty documents. In addition, the proposed method
employs the stacked generalization deep learning ensemble and has shown to be better than the baseline method
on all the cut-off depths of documents for the predicted high-cost precision metric. Furthermore, the
justifications through mathematical intuitions have been presented for the correlation of the precision and rank
biased precision metrics and also why recall and average precision have reduced correlation when the cut-off
depth increases.



We also investigated the effect of the variations of relevance assessments on the correlations of the evaluation.
Despite the achievements in this study, there is still room for future work. Many correlations between
information retrieval evaluation metrics have been identified in previous research (Baccini et al., 2012; Gupta et
al., 2019; Tague-Sutcliffe and Blustein, 1995). However, justifications for most of these correlations are lacking.
Furthermore, the proposed method for the prediction of the high-cost precision metrics could be further
enhanced in order to improve its predictive accuracy especially for the higher cut-off depths of the high-cost
precision metric such as 500 and 1000 documents. In addition, there is a need to investigate the effect of
contributing and non-contributing systems in the TREC tracks on the predictions of high-cost evaluation metrics.
Lastly, the selection of a specific number of topic scores could be attempted in the process of creating the
training set and an investigation could be carried out to ascertain the extent to which prediction of high-cost
metrics is influenced.
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