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Abstract

Speech emotion recognition (SER) is one of the most

challenging and active research topics in data science

due to its wide range of applications in human–

computer interaction, computer games, mobile

services and psychological assessment. In the past,

several studies have employed handcrafted features

to classify emotions and achieved good classification

accuracy. However, such features degrade the

classification accuracy in complex scenarios. Thus,

recent studies employed deep learning models to

automatically extract the local representation from

given audio signals. Though, automated feature

engineering overcomes the issues of handcrafted

feature extraction approach. However, still there is a

need to further improve the performance of reported
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techniques. This is because, in reported techniques,

single-layer and two-layer convolutional neural

networks (CNNs) were used and these architectures

are not capable of learning optimal features from

complex speech signals. Thus, to overcome this

limitation, this study proposed a novel SER

framework, which applies data augmentation

methods before extracting seven informative feature

sets from each utterance. The extracted feature vector

is used as input to the 1D CNN for emotions

recognition using the EMO-DB, RAVDESS and

SAVEE databases. Moreover, this study also

proposed a cross-corpus SER model using the all

audio files of common emotions of aforementioned

databases. The experimental results showed that our

proposed SER framework outperformed existing SER

frameworks. Specifically, the proposed SER

framework obtained 96.7% accuracy for EMO-DB

with all utterances in seven emotions, 90.6%

RAVDESS with all utterances in eight emotions,

93.2% for SAVEE with all utterances in seven

emotions and 93.3% for cross-corpus with 1930

utterances in six emotions. We believe that our

proposed framework will bring significant contribute

to SER domain.
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Abbreviations

Speech emotion recognition

Human–computer interaction

Mel frequency cepstral coefficient

Ryerson audio-visual database of

emotional speech and song

Surrey audio-visual expressed emotion

database
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CL:

ReLU:

ZCR:

HNR:

MEDC:

k-NN:

SVM:

Convolutional layer

Rectifier linear unit

Zero cross rate

Harmonics-to-noise ratio

Mel energy spectrum dynamic coefficients

K-nearest neighbor

Support vector machine
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