
����������
�������

Citation: Akbar, F.; Hussain, M.;

Mumtaz, R.; Riaz, Q.; Wahab, A.W.A.;

Jung, K.-H. Permissions-Based

Detection of Android Malware Using

Machine Learning. Symmetry 2022,

14, 718. https://doi.org/10.3390/

sym14040718

Academic Editor: Zhixun Su

Received: 9 February 2022

Accepted: 22 March 2022

Published: 2 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Permissions-Based Detection of Android Malware Using
Machine Learning
Fahad Akbar 1, Mehdi Hussain 1,* , Rafia Mumtaz 1 , Qaiser Riaz 1 , Ainuddin Wahid Abdul Wahab 2

and Ki-Hyun Jung 3,*

1 School of Electrical Engineering and Computer Science, National University of Sciences and
Technology (NUST), Islamabad 44000, Pakistan; fakbar.msis18seecs@seecs.edu.pk (F.A.);
rafia.mumtaz@seecs.edu.pk (R.M.); qaiser.riaz@seecs.edu.pk (Q.R.)

2 Faculty of Computer Science and Information Technology, University of Malaya,
Kuala Lumpur 50603, Malaysia; ainuddin@um.edu.my

3 Department of Cyber Security, Kyungil University, Gyeongsan-si 38428, Korea
* Correspondence: mehdi.hussain@seecs.edu.pk (M.H.); khanny.jung@gmail.com (K.-H.J.)

Abstract: Malware applications (Apps) targeting mobile devices are widespread, and compromise
the sensitive and private information stored on the devices. This is due to the asymmetry between
informative permissions and irrelevant and redundant permissions for benign Apps. It also depends
on the characteristics of the Android platform, such as adopting an open-source policy, supporting
unofficial App stores, and the great tolerance for App verification; therefore the Android platform is
destined to face such malicious intrusions. In this paper, we propose a permissions-based malware
detection system (PerDRaML) that determines the App’s maliciousness based on the usage of
suspicious permissions. The system uses a multi-level based methodology; we first extract and
identify the significant features such as permissions, smali sizes, and permission rates from a manually
collected dataset of 10,000 applications. Further, we employ various machine learning models to
categorize the Apps into their malicious or benign categories. Through extensive experimentations,
the proposed method successfully identifies the 5× most significant features to predict malicious
Apps. The proposed method outperformed the existing techniques by achieving high accuracies of
malware detection i.e., 89.7% with Support Vector Machine, 89.96% with Random Forest, 86.25% with
Rotation Forest, and 89.52% with Naïve Bayes models. Moreover, the proposed method optimized
up to ~77% of the feature set as compared to the recent approaches, while improving the evaluation
metrics such as precision, sensitivity, accuracy, and F-measure. The experimental results show that
the proposed system provides a high level of symmetry between irrelevant permissions and malware
Apps. Further, the proposed system is promising and may provide a low-cost alternative for Android
malware detection for malicious or repackaged Apps.

Keywords: malware detection; repackaged applications; suspicious permissions; static malware
analysis

1. Introduction

Android is one of the commonly used smartphone operating systems and is currently
occupying around 70.97% of the market share (Mobile Operating System Market Share
Worldwide https://gs.statcounter.com/os-market-share/mobile/worldwide/, available
online: 8 February 2022). According to the recent statistics (App Download and Usage Statis-
tics https://www.businessofapps.com/data/app-statistics/, available online: 8 February
2022), there are around 2.56 million Applications that can be downloaded from the official
App stores, while many can be downloaded from the other sources. The statistics show that
Android is an absolute leader in the smartphone application market with a daily increase
of Apps. The most attractive feature offered by the Android platform is the provision of
feature-rich applications for a wide range of users. Moreover, to facilitate users as well as

Symmetry 2022, 14, 718. https://doi.org/10.3390/sym14040718 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14040718
https://doi.org/10.3390/sym14040718
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4321-2532
https://orcid.org/0000-0002-0966-3957
https://orcid.org/0000-0003-3722-4764
https://orcid.org/0000-0003-1062-0329
https://orcid.org/0000-0002-0662-8355
https://gs.statcounter.com/os-market-share/mobile/worldwide/
https://www.businessofapps.com/data/app-statistics/
https://doi.org/10.3390/sym14040718
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14040718?type=check_update&version=2

Symmetry 2022, 14, 718 2 of 19

the developers of the Apps, Google’s Play Store has adopted an open-source policy for
App availability and provided great tolerance to App verification at the time of release,
increasing the popularity of the platform.

Unfortunately, this popularity and the ease of App distribution have spurred the
interest of many cyber-criminals across the globe. Reports show that nearly 97% of mobile
malware prey on Android devices. In the second quarter of 2021, nearly 1.45 million new
Android malware Apps were detected (IT threat evolution Q2 2021. Mobile statistics https:
//securelist.com/it-threat-evolution-q2-2021-mobile-statistics/103636/, available online:
8 February 2022), which shows that new malware is being produced every few seconds.
These malicious Apps are designed for performing different types of offenses in the form of
worms, exploits, Trojans, viruses, and many more. Some of these applications are released
intentionally in many variants to target a larger audience, making them harder to be
detected (Fidelis Threat Intelligence Report—February/March 2021 https://fidelissecurity.
com/resource/report/fidelis-threat-intelligence-report-february-march-2021/, available
online: 8 February 2022). The intrusion of malicious Apps into the mobile platform has
drawn a wide consideration from academia as well as the industry. To address these
elevating concerns, analysts and researchers across the world have developed and used
various approaches to design efficient Android malware detection tools using different
methodologies [1–23].

Generally, the malicious APKs detection mechanisms consist of dynamic and static
analysis. The dynamic aspect of the analysis deals with the runtime behavior of applications
during their execution phases against selected test cases. However, the static analysis is
performed in a non-runtime environment concerning examining the source code, byte
code, or application binaries and analyzing the meta and auxiliary information for signs of
security vulnerabilities [24,25]. Since the dynamic approach involves detailed analysis of
the applications it is considered to be an accurate method for detection, however, it requires
high computational cost. Further, the analysis is performed after the execution of the APKs,
unlike the static approach. Due to this reason, static analysis is considered to be faster and
more helpful in developing an initial view of the APKs based on their expected behaviors.

Static analysis involves an encyclopedic spectrum of strategies and techniques seeking
to recognize the runtime demeanors of a software preceding its execution. In a security
contexture, the motivation is naturally to segregate conclusively malicious or repackaged
Apps ahead of their installs and executions. Static analysis flags an App as malicious on the
authority approximation of its possible runtime behaviors. These approximations generally
result from the methods encompassing permissions, code analysis or API calls, Intents,
App components, file property, native code, etc., [17].

Generally, Android employs the permission-based security model to protect users’
information, or to restrict Apps from accessing users’ sensitive information. Typically,
Android Apps permissions are exploited because they are considered to be one of the most
fundamental and paramount security evaluation mechanisms on the Android platform.
Therefore, it is almost impossible to take planned action, making the permission scanning
a critical step for malware detection without being granted explicit permission. Android
Apps request a list of permissions to be granted before providing its functionality to the
users. Multiple permissions may reflect some adverse behaviors when used together. For
example, the App may procure the users’ SMS information and then disseminate it out
over the Internet when an App asks for network permission together with the SMS access
permission. It means that Android permissions are widely used and considered one of the
most effective static features.

In the literature, various malicious APK detection approaches employed the permis-
sion and API calls with existing machine learning and deep learning models with their
merits and demerits [4,5,7–11,13,17–19,21,22,26]. Recently, a detection technique has also
been evaluated on cloud computing [19]. Similarly, a semantic analysis-based approach
named SWORD [20] has been proposed that identifies evasion-aware malicious Apps using
Asymptotic Equipartition Property (AEP).

https://securelist.com/it-threat-evolution-q2-2021-mobile-statistics/103636/
https://securelist.com/it-threat-evolution-q2-2021-mobile-statistics/103636/
https://fidelissecurity.com/resource/report/fidelis-threat-intelligence-report-february-march-2021/
https://fidelissecurity.com/resource/report/fidelis-threat-intelligence-report-february-march-2021/

Symmetry 2022, 14, 718 3 of 19

In this study, we primarily focus on permissions-based detection. The proposed
scheme is inspired by the method of Hui-Juan Zhu et al. [9] that consists of a permission-
based malicious APKs detection strategy. The motive of the proposed scheme is to improve
the performance of malicious detection APKs while reducing the number of selected per-
missions for classification purposes. The scheme of Hui-Juan Zhu et al. [9] only employed
the Support Vector Machine (SVM) and Rotation Forest classifiers. On the other hand, the
proposed Permission-based Malicious Apps detection (PerDRaML) strategy successfully
explored and improved the detection accuracies by finding the best classifiers already in
practice such as Random Forest and Naive Bayes. The main aim of the proposed study is
to identify the minimal and effective permissions set as compared to the existing methods
while achieving high classification accuracies.

In the proposed scheme, we first decompile Apps using AndroGuard for the permis-
sion extraction process. Further, the permissions are extracted from dataset applications
collected from VirusShare (http://virusshare.com/, 28 January 2021) and the Official Play
Store. The extracted permissions are then filtered using the feature importance technique
and combined with other features—permission rates and the App size metrics. After
generating the permission feature set, then various machine learning models for detecting
malicious Apps are employed. The contributions of the proposed scheme are as follows:

• A lightweight malware detection system.
• Manual collection of a new ~10,000 malware and benign APKs dataset, publicly

available at GitHub [27].
• Optimization of permission feature set (~77%) as compared to existing techniques.
• Improved detection accuracy up to 90% using standard ML techniques—SVM, Ran-

dom Forest, and Naïve Bayes based classifiers.
• Fully functional source code of the proposed scheme readily available [28] for

future research.

The remainder of this paper is organized as follows: Section 2 presents the literature
review and Section 3 consists of the proposed methodology. Experiments and performance
comparisons are reported in Section 4. Finally, the conclusion and future work is discussed
in Section 5.

2. Literature Review

In this section, we will examine the existing malicious App detection schemes more
towards the domain of static analysis. Feizollah et al. [1] employed static analysis to apply
characteristic-based methodology. They argued the effectiveness of using android intents
and extracted intents from different Android applications according to the features for
the malware classification. Feizollah et al.’s approach can achieve a 91% detection rate
with intents and 95.5% with the combination of intents and permissions. However, it is
justified that the intents are not an ultimate solution and should be used in conjunction
with other characteristics. Similarly, Nisha et al. [2] proposed the detection of repackaged
Android malware using mutual information and chi-square techniques for the selection of
features. Random forest classifier was able to achieve the highest accuracy of 91.76% among
employed classifiers. However, Nisha et al.’s technique is focused on the 88 uniquely
identified permissions for the analysis, which can be further optimized to include only the
harmful ones.

Similarly, Sandeep [3] extracted information from the applications and performed
Exploratory Data Analysis (EDA). The EDA approach focuses on the detection of mal-
ware using deep learning techniques during the installation process. Sandeep’s detection
framework employed several options like permissions to mirror the behaviors of the appli-
cations. It achieved 94.6% accuracy when Random Forest was used as the classifier. The
approach uses 331 features for the classification which can further be optimized. Li et al. [4]
suggested a permission-based detection system called SIGPID on the permission usage
analysis. Li et al. employed a multi-level data pruning technique for the selection of
features. Using three levels of pruning—Permission Ranking with Negative Rate (PRNR),

http://virusshare.com/

Symmetry 2022, 14, 718 4 of 19

Support Based Permission Ranking (SPR), and Permission Mining with Association Rules
(PMAR)—they could identify 22 significant permissions. The SIGPID technique has reached
~90% precision, accuracy, recall, and F-measure by employing SVM classifier.

Similarly, Wang et al. [5] performed a Multilevel Permission Extraction (MPE) ap-
proach where they focused on automatically identifying the permission interaction that
helps to distinguish between the benign and the malicious applications. Their dataset in-
cluded 9736 applications from each category set—benign and malicious—and experimental
results show that a detection rate of 97.88% was achieved. In Fan et al. [6], an approach
called fregraphs was proposed, where constructed frequent subgraphs represent the typ-
ical behaviors of malware belonging to the same family. Fan et al. proposed FalDroid,
which is a system based on fregraphs for detection. Experimental results showed that
FalDroid can classify up to 94.2% of malware samples into their respective categories on
average within 4.6 s per App. Similarly, Fatima et al. [7] developed a host-server-based
methodology for malware detection. Fatima et al.’s research is focused on the extraction
of the application features such as permissions, App components, etc. Further, they were
sent to the remote server for analysis, where a machine learning random classifier was
applied for the malware classifications. Fatima et al.’s host-server approach can mitigate
the computational overhead and resource constraints while gaining over 97% accuracy, but
the scheme requires a complete server scale infrastructure to handle the real-time request.
Further, the proposed scheme hasn’t discussed the security of data involved in the process.

The DroidSieve method was proposed by Guillermo et al. [11]. They have analyzed
the syntactical characteristics of the Apps for detection and classification. The DroidSieve
scheme collected a listing of API calls from the code. Further, it collected the requested
permissions with a set of the existing application components in the context of static
features. Guillermo et al. have collected the feature sample for ~100,000 Apps from both
classes and then fed it to ML algorithms such as ExtraTrees, SVM [12], and XGBoost [29].
As a result, the DroidSieve scheme achieved 99.44% detection accuracy with zero false
positives. According to the authors, the approach is not robust against mimicry attacks and
may degrade due to concept drift.

Similarly, Qiao et al. [13] also proposed a similar detection approach based on the
API calls and the permissions. Qiao et al. note that the requested permissions within the
AndroidManifest.xml file alone may be an over-approximation since some applications
usually request excess permissions. To mitigate this, Qiao et al. decompiled the dex byte
code into Java source code to extract API calls and map the used permissions in order
to generate the feature set. Experimental results from 6260 applications, the SVM [12],
Random Forest [30], and Artificial Neural Networks (ANN) [31] showed as detection rates
between 78.40% and 94.98%. Their approach requires mapping of permissions with its
usage increasing overhead. In another approach, Wu et al. [14] proposed a system named
DroidMat which considers multiple static features such as permissions, intents, and API
calls with the usage in the components such as service and activity. Wu et al. noticed
that a combination of K-Means [15] and k-nearest neighbors (KNN) [16] with k = 1 as the
classification provides optimal results. However, DroidMat possesses just one sample of the
malware for the various Android malware families and an incontrovertible fact that limits
DroidMat’s inferring ability of a malware’s behavior. Similarly, Sun et al. [8] used static
analysis in the study and proposed a collection of program characteristics consisting of
sensitive API calls and permissions, and performed evaluations using the Extreme Learning
Machine (ELM) technique. Sun et al.’s aim consists of detection which involves minimal
human intervention. Sun et al. implemented an automated tool called WaffleDetector. The
proposed tool showed ~97.14% accuracy using the ELM technique. However, the results
are based on a small dataset of only 1049 applications from third-party or unofficial stores.

Zhu et al. [9] proposed a low-cost system for malware detection by extracting a set
of system events, permissions, and sensitive APIs and calculating the permission rate
according to the key features. Zhu et al.’s approach employed the ensemble Rotation Forest
(RF) to construct a model for the classification of malicious and benign APKs. The approach

Symmetry 2022, 14, 718 5 of 19

yielded over 88% detection accuracy which is almost 3.3% higher when compared with
SVM classifier. However, Zhu et al.’s technique is evaluated on the limited APKs dataset.
Further, the proposed feature set can be optimized and evaluated with other ML classifiers
to improve detection accuracy. For a quick review, Table 1 is designed to summarize the
existing approaches.

Table 1. A brief summary of existing static analysis based malicious APK detection approaches.

Reference Features No. of Features No. of Samples Classifier/Algorithm Accuracy Suggestions

Feizollah et al. [1],
2017

Intents (explicit and
implicit),

Permissions
Variable 7406 (B:1846,

M:5560)

Bayesian Network
using k-fold

cross-validation
95.5%

To improve the accuracy,
the intents can be
utilized in conjunction
with other characteristics

Nisha et al. [2], 2018 Permissions 88 -
KNN, SVM, DT, Naïve

Bayes and Random
Forest

92.94%

Permissions can be
reduced by exploring
the most relevant ones
(i.e., Li et al. [4], 2017).

Sandeep [3], 2019 Permissions 331 - Random Forest 94.65%

Other classifiers can be
explored to improve the
detection accuracies.
Further, the features can
be optimized while
incorporating the
resistance against
mimicry attacks, App
cloning, or adware

Li et al. [4], 2017

Ranking,
support-based, and

multi-level
Permissions Pruning

22 - SVM >90%

Unknown samples were
collected. The scheme
should be tested on
larger datasets.

Wang et al. [5], 2019 Permission
Interactions 25 9736 MN, SVM, D-Tree,

and Random Forest 97.9% -

Fan et al. [6], 2018

Fregraphs to
represent common

behaviors of
malware

Variable Multiple datasets - 94.2% -

Fatima et al. [7], 2020 Frequent sub-graphs 674 50,000
(B:25,000, M:25,000)

Random classifier by
server client arch. >97%

The security of host vs.
server communications
should be evaluated.

Sun et al. [8], 2017 Permission, API calls 83 1049
(B:524, M:525)

Extreme Learning
Machine 97.14% Dataset only limited to

Chinese markets

Zhu et al. [9], 2018 Permission, API calls 22 2130
(B:1065, M:1065)

SVM and Rotation
Forest >88%

Evaluation on limited
APKs dataset and as
well as limited classifiers
was explored

Guillermo et al. [11],
2017 Permission, API calls - 100,000 ExtraTrees, SVM, RF,

XGBoost 99.82% -

Qiao et al. [13], 2016 Permission, API calls - 6260 SVM, Random Forest,
ANN 78.40–94.98% -

Wu et al. [14], 2012 Permission, API calls - 1738 K-Means, k-nearest
neighbors 97.87% Evaluation on limited

APKs dataset

In the aforementioned research, most of the techniques employed the permission-
based feature set for the classification of benign and malicious APKs. Permissions based
techniques are generally employed for the detection of maliciousness as they provide fast
and almost high detection accuracy. Since the analysis is performed before the App installs,
any harm to the device is prevented. The permissions can perform a key role in the faster
detection of the malware. However, there is a lack of employment of minimal effective
permissions to improve detection accuracy. Further, minimizing ineffective permission
features may reduce the computation complexity.

Therefore, we propose a scheme that can take the power of the permissions and use it
to employ a computation effective and faster detection approach. In the next section, we
will discuss the proposed scheme to overcome the limitation of existing methods.

3. The Proposed Methodology

In this section, we will discuss the proposed scheme that is inspired by and an improve-
ment of Zhu et al.’s [9] technique. The proposed scheme enhanced the detection accuracy
while reducing the number of permissions based on the effectiveness of the permission’s

Symmetry 2022, 14, 718 6 of 19

features. The proposed Permission-based Malicious Apps detection (PerDRaML) system
extracts permission usage from the application packages, but rather than analyzing all
requested permissions, PerDRaML mainly targets the selected set of permissions that are ef-
fective in distinguishing and improving the rate of malware detection. For the classification,
the proposed scheme employed the Support Vector Machine (SVM), Rotation Forest, Naïve
Bayes, and lastly the Random Forest classifiers. We have selected the permissions based on
notable influence on the malware detection potency. The proposed research consists of the
following major components:

I. Collecting Malicious and Benign APKs
II. Constructing/Identifying the Features Set
III. Filtering, Finalizing, and Extracting the Permissions (Features) Dataset
IV. Employing the Supervised ML algorithms to Classify the Android Malware

The proposed PerDRaML strategy is shown in Figure 1a,b. Figure 1a depicts the
collections, decompiling, constructing, and filtering of APKs parameter features for a
dataset. Figure 1b depicts the evaluation of the framework and how APKs will be evaluated
on classifiers to distinguish by benign and malicious. The key components are as follows.

3.1. Malicious and Benign Samples Collection

For the dataset, we have collected Android applications from two sets of android
families, malicious and benign as a general. We have gathered (~5000) malicious Apps from
VirusShare (http://virusshare.com/, 28 January 2021), a well-known Android malware
database. VirusShare collects applications from different malware families from time to
time and makes them available as zip archives. These files can be downloaded using
any torrent client. The benign Apps (~5000) have been collected from the official App
store (Google’s Play Store) using our Python-based script available at [32]. To provide
more diversity to the dataset, benign APKs have been collected from different Play Store’s
application categories. The total number of APKs consists of 10,000 samples, half of which
(5000) belong to each category [28]. These samples are used in the research to carry out
cross-validation experimentations as well as for training data in order to evaluate the
effectiveness of the proposed methodology.

3.2. Constructing the Parameter Feature Set

The first step of building and classifying the classifier models is the collection of
relevant key permissions from a dataset. Generally, the features such as permissions
requested by an application are enlisted in the Android application package (APK’s)
AndroidManifest.xml. For permission extraction, we have adopted Androguard [23] to
decompile the 10,000 applications for our dataset. We extracted various types of possible
permissions to construct the feature set list i.e., permissions, permission rate, and the smali
sizes of the applications to carry out static analysis and to explicitly grasp the behavior of
each App.

3.3. Filtering, Finalizing, and Extracting the Core Features

After identifying the list of permissions, this section aims to determine the most
significant permissions that can be used for distinguishing Apps from malicious and benign
ones. To select the significant key permissions for malware detection, we have explored
and evaluated Google’s dangerous permission list [2] and the Zhu et al. [9] permission set
as shown in Table 2. From Table 2, it is observed that Zhu et al. [9] overlapped the nine
Google permission features for its evaluation while employing an additional feature named
permission rate. The selection of effective permissions is stated in the next section.

http://virusshare.com/

Symmetry 2022, 14, 718 7 of 19
Symmetry 2022, 13, x FOR PEER REVIEW 7 of 19

(a)

(b)

Figure 1. (a) Flow diagram of creating features, constructing datasets for malicious and benign

APKs. (b) Flow diagram of malicious and benign APKs classifications.

3.1. Malicious and Benign Samples Collection

For the dataset, we have collected Android applications from two sets of android

families, malicious and benign as a general. We have gathered (~5000) malicious Apps

from VirusShare (http://virusshare.com/, 28 January 2021), a well‐known Android mal‐

ware database. VirusShare collects applications from different malware families from time

to time and makes them available as zip archives. These files can be downloaded using

any torrent client. The benign Apps (~5000) have been collected from the official App store

(Google’s Play Store) using our Python‐based script available at [32]. To provide more

Figure 1. (a) Flow diagram of creating features, constructing datasets for malicious and benign APKs.
(b) Flow diagram of malicious and benign APKs classifications.

Symmetry 2022, 14, 718 8 of 19

Table 2. Feature importance of dangerous permissions identified by Google and Zhu et al. [9] with
additional metrics.

S. No Features Source Importance% S. No Features Source Importance %

1 READ_PHONE_STATE G 0.31892 15 ACCESS_NOTIFICATION_POLICY G 0.00337

2 Smali Size R 0.22674 16 WRITE_CONTACTS G 0.00265

3 Permission rate R 0.20376 17 READ_CALENDAR G 0.00235

4 WRITE_EXTERNAL_STORAGE G + R 0.06948 18 READ_CALL_LOG G 0.00200

5 ACCESS_COARSE_LOCATION G 0.05323 19 WRITE_CALENDAR G 0.00175

6 ACCESS_FINE_LOCATION G 0.01932 20 INSTALL_PACKAGES G + R 0.00151

7 RECORD_AUDIO G 0.01923 21 SET_ALARM G + R 0.00090

8 READ_EXTERNAL_STORAGE G 0.01588 22 BODY_SENSORS G 0.00080

9 SEND_SMS G + R 0.01268 23 WRITE_SECURE_SETTINGS G + R 0.00077

10 CAMERA G 0.01024 24 WRITE_CALL_LOG G 0.00069

11 RECEIVE_SMS G + R 0.01009 25 UPDATE_DEVICE_STATS G + R 0.00016

12 GET_ACCOUNTS G 0.00953 26 READ_HISTORY_BOOKMARKS G + R 0.00002

13 READ_SMS G 0.00743 27 WRITE_HISTORY_BOOKMARKS G + R 0.00000

14 READ_CONTACTS G 0.00650 - - - -

Google: G; Benchmark, Zhu et al. [9]: R.

3.3.1. Selection of Effective Permissions

To select the minimum set of permissions we filter out the permissions that are less
impactful for the detection. For this, we employed different combinations of Google’s
dangerous permission list (from Table 2) while also incorporating the feature importance
property. Feature importance is a measure that helps generate simpler and faster prediction
models using fewer inputs [33,34]. We use Random Forest-based feature importance to
enlist the important permissions (Table 2). We have defined a threshold measure of 0.1 to
select the most impactful ones by ignoring the permissions that show importance lower
than 0.1. Through the various combinations of feature set experiments, we finally identify
the most significant permission list as shown in Table 3.

Table 3. The proposed identified parameter features.

Type No Name

Permissions

1 android.permission.READ_PHONE_STATE

2 android.permission.WRITE_EXTERNAL_STORAGE

3 android.permission. ACCESS_COARSE_LOCATION

Metrics
1 Smali Size

2 Permission Rate

3.3.2. Generating Dataset

The permission information is translated into a dataset in the binary format where ‘1’
specifies an App requesting the permission, and ‘0’ indicates the opposite. The permission
lists extracted from malicious and benign Apps, represented in the binary format, are
combined to make one holistic dataset for analysis.

However, the direct comparison of Zhu et al. [9] with proposed selected features can
be seen in Table 4. In order to better classify the malware, we also accumulate some other
metrics for benign and malware training datasets such as permission rate and smali size. In
this paper, permission rate (pr) is adopted from [9] as one of the detection metrics defined by
the formula in Equation (1):

pr =
pn
ss

(1)

Symmetry 2022, 14, 718 9 of 19

where pn is the total amount of permissions requested by the App and ss represents the
size of the application’s smali files obtained after decompiling the APK. The smali size (ss)
metric is based on the assumption that the malware Apps usually request a higher set
of permissions and also require more implementation to abuse the privileges offered by
them, thus increasing the size of the App. Due to this reason, this metric can be used as an
identifier for the repackaged applications.

Table 4. Comparison of the proposed and Zhu et al. [9] methods’ features.

Permissions/Features Zhu et al. [9] Proposed Method

Permission

WRITE_EXTERNAL_STORAGE X X

UPDATE_DEVICE_STATS X X

SET_ALARM X X

INSTALL_PACKAGES X X

WRITE_HISTORY_BOOKMARKS X X

WRITE_SECURE_SETTINGS X X

READ_HISTORY_BOOKMARKS X X

RECEIVE_SMS X X

SEND_SMS X X

READ_PHONE_STATE X X

ACCESS_COARSE_LOCATION X X

APIs & URLs

sendTextMessage() X X

getMessageBody() X X

getSubscriberId() X X

getLine1Number() X X

getLastKnownLocation() X X

content://com.android.contacts X X

System Event

DATA_SMS_RECEIVED X X

BATTERY_CHANGED X X

AIRPLANE_MODE X X

SMS_RECEIVED X X

c2dm.intent.RECEIVE X X

QUICKBOOT_POWERON X X

Metrics Permission Rate X X

Smali Size X X

Percentage (Feature Usage) 88.0% 20.0%

3.4. Malware Detection by Employing Machine Learning Classification Models

In this section, we employed supervised machine learning classifiers that correctly
predict malicious Apps with minimum false positives. The overall strategy of the proposed
approach is carved up into two parts; the first one consists of Permissions Extraction (with
APK decompiling, matrix calculations, and finalizing the dataset features), and the second
one consists of training and validation of the supervised learners using the aforementioned
datasets with various ML algorithms.

The proposed dataset consists of 10,000 samples made up of 5000 samples from each
category. In experiments, we applied a similar training and testing strategy technique
as Zhu et al. [9] to create uniformity. For this, we employed the 10-fold crossed valida-

Symmetry 2022, 14, 718 10 of 19

tion technique for the classification of each model to avoid the over-fitting problem in
the dataset.

4. Performance Evaluation

In this section, we will evaluate the effectiveness of the proposed PerDRaML malware
detection approach. We have selected conventional machine learning algorithms; SVM,
Random Forest, and Naive Bayes models with the benchmark (Rotation Forest) to evaluate
the proposed scheme. Initially, the Rotation Forest classification model is evaluated on
both the proposed and Zhu et al. [9] feature set model. Further, we compared the detection
accuracy results on three different models i.e., SVM, Random Forest, and Naive Bayes with
the proposed and Zhu et al. [9] approaches.

The proposed PerDRaML approach only employed the most 5× significant permis-
sions instead of the 22× different feature sets that were used in the benchmark approach [9].
Table 5 shows the results of the benchmark approach where the detection accuracies are
around 84.93 ± 1.8%, 88.26 ±1.73% on SVM and Rotation Forest classifiers. However, the
proposed method outperformed the benchmark approach [9] by achieving classification
accuracies of approximately 89.70% with minimum permissions set. In the next section, we
will discuss the evaluation measures in detail.

Table 5. The performance results of Zhu et al. approach [9] on SVM, rotation forest with 10-fold
cross-validation.

Classifier Test Set Precision (%) Sensitivity
(TPR, %)

Accuracy
(%) AUC

SVM

1 85.71 87.27 85.91 0.85

2 87.27 83.48 84.51 0.87

3 81.48 83.02 82.16 0.83

4 77.06 85.71 81.69 0.83

5 87.62 85.98 86.85 0.88

6 81.82 88.24 84.98 0.86

7 82.30 89.42 85.45 0.89

8 84.40 87.62 85.92 0.88

9 88.39 83.19 84.51 0.85

10 85.29 87.88 87.32 0.86

Average (%) 84.13 ± 3.5% 86.18 ± 2.3 84.93 ± 1.8 0.86 ± 0.02

Rotation
Forest

1 88.18 88.18 87.79 0.88

2 88.03 89.57 87.79 0.90

3 86.11 87.74 86.85 0.86

4 84.62 89.80 87.79 0.90

5 88.35 85.05 86.85 0.88

6 89.11 88.24 89.20 0.89

7 89.81 93.30 91.55 0.93

8 87.00 82.86 85.45 0.86

9 91.30 88.24 88.73 0.89

10 89.11 90.91 90.61 0.90

Average (%) 88.16 ± 1.80 88.4 ± 2.76 88.26 ± 1.73 0.89 ± 0.02

Symmetry 2022, 14, 718 11 of 19

4.1. Evaluation Measures

For evaluation, we followed the standard evaluation metrics: Sensitivity, Precision,
Accuracy, Area Under Curve (AUC), and the Receiver Operating Characteristic (ROC).
Correspondingly, the following formulas represent their definitions.

Accuracy =
T P + T N

T P + F P + T N + F N

Sensitivity =
T P

T P + F N

Precision =
T P

T P + F P

F1 − Score =
TP

TP + 1
2 (FP + FN)

where true positive (TP) represents the number of positive testing samples that are accu-
rately predicted as positive, false positive (FP) is the number of negative testing samples
that are falsely predicted as positive, true negative (TN) is the number of negative testing
samples accurately predicted as negative, and false negative (FN) is the number of positive
testing samples falsely predicted as negative.

4.2. Evaluating PerDRaML Effectiveness

To evaluate the effectiveness of the proposed scheme, we employed various classi-
fication models to illustrate the generality of PerDRaML. In experiments, we employed
the cross-fold validation technique to the classifier models from the prospect of stability
and in order to elude the over-fitting. We compared our experiments using the 10-cross
validation. Particularly, the samples are randomly divided into ten disjoint copies, each
classifier taking one of the copies as the test set and the remaining nine as the training set
to construct the model. The results of the 10-folded classification can be seen in Tables 6–9
with respective ROC figures from 2 to 5.

Table 6. The proposed scheme results on SVM classifier with 10-fold cross-validation.

Classifier Test Set Precision
(%)

Sensitivity
(TPR, %)

F1—Score
(%)

Accuracy
(%) AUC

SVM

1 89.63 89.65 89.60 89.60 0.95

2 89.66 89.64 89.60 89.60 0.95

3 90.01 89.98 89.99 90.00 0.95

4 89.07 89.01 89.00 89.00 0.93

5 90.63 90.63 90.60 90.60 0.95

6 90.46 90.21 90.27 90.30 0.95

7 89.11 88.82 88.87 88.90 0.94

8 90.63 90.59 90.50 90.50 0.95

9 88.81 88.81 88.80 88.80 0.94

10 89.73 89.66 89.68 89.70 0.94

Average (%) 89.77 89.70 89.69 89.70 0.94

Symmetry 2022, 14, 718 12 of 19

Table 7. The proposed scheme results on rotation forest classifier with 10-fold cross-validation.

Classifier Test Set Precision (%) Sensitivity
(TPR, %)

F1—Score
(%)

Accuracy
(%) AUC

Rotation
Forest

1 85.49 85.49 85.49 85.50 0.86

2 86.50 86.39 86.39 86.40 0.88

3 86.38 86.43 86.39 86.40 0.87

4 85.31 85.33 85.30 85.30 0.87

5 87.62 87.62 87.60 87.60 0.89

6 86.59 86.58 86.58 86.60 0.88

7 86.20 86.19 86.20 86.20 0.88

8 87.65 87.67 87.66 87.70 0.89

9 85.81 85.81 85.80 85.80 0.87

10 84.94 84.90 84.92 85.00 0.87

Average (%) 86.25 86.24 86.23 86.25 0.88

Table 8. The proposed scheme results on random forest classifier with 10-fold cross-validation.

Classifier Test Set Precision (%) Sensitivity
(TPR, %)

F1—Score
(%)

Accuracy
(%) AUC

Random
Forest

1 91.30 91.29 91.30 91.30 0.95

2 88.12 88.14 88.10 88.10 0.94

3 89.44 89.28 89.34 89.40 0.94

4 89.47 89.50 89.48 89.50 0.95

5 91.51 91.48 91.49 91.50 0.96

6 89.73 89.70 89.70 89.70 0.95

7 90.56 90.63 90.58 90.60 0.95

8 89.09 89.13 89.10 89.10 0.95

9 89.71 89.63 89.60 89.60 0.95

10 90.80 90.82 90.80 90.80 0.95

Average (%) 89.97 89.96 89.95 89.96 0.95

From Table 6, the proposed strategy using SVM achieved the average accuracy as
89.7% with 89.77% precision and 89.7% sensitivity. The ROC can also be seen in Figure 2
for SVM based classifier. Similarly, the accuracy using the Rotation Forest classifier on the
proposed feature set achieved up to 86.25% with 86.25% precision and 86.24% sensitivity as
shown in Table 7. Figure 3 also depicts the ROC of the rotation forest classifier. Similarly,
the proposed strategy using Random Forest achieved an average accuracy of 89.96% with
89.97% precision and 89.96% sensitivity as shown in Table 8. The ROC can also be seen in
Figure 4 for Random Forest-based classifier. Finally, the Naive Bayes classifier accuracy can
be seen in Table 8, where the average detection rate is 89.52% with 89.53% precision and
89.52% sensitivity. The ROC graph of Naïve Bayes is shown in Figure 5.

Symmetry 2022, 14, 718 13 of 19

Table 9. The proposed scheme results on Native Bayes classifier with 10-fold cross-validation.

Classifier Test Set Precision (%) Sensitivity
(TPR, %)

F1—Score
(%)

Accuracy
(%) AUC

Naive
Bayes

1 88.80 88.80 88.80 88.80 0.92

2 89.25 89.39 89.28 89.30 0.93

3 89.52 89.49 89.50 89.50 0.92

4 89.79 89.82 89.80 89.80 0.94

5 89.25 89.12 89.17 89.20 0.92

6 90.12 90.10 90.10 90.10 0.93

7 88.53 88.65 88.49 88.50 0.92

8 90.60 90.60 90.60 90.60 0.94

9 89.63 89.49 89.55 89.60 0.93

10 89.82 89.75 89.78 89.80 0.92

Average (%) 89.53 89.52 89.50 89.52 0.93

Symmetry 2022, 13, x FOR PEER REVIEW 13 of 19

10 90.80 90.82 90.80 90.80 0.95

Average (%) 89.97 89.96 89.95 89.96 0.95

Table 9. The proposed scheme results on Native Bayes classifier with 10‐fold cross‐validation.

Classifier Test Set
Precision

(%)

Sensitivity

(TPR, %)

F1—Score

(%)

Accuracy

(%)
AUC

Naive Bayes

1 88.80 88.80 88.80 88.80 0.92

2 89.25 89.39 89.28 89.30 0.93

3 89.52 89.49 89.50 89.50 0.92

4 89.79 89.82 89.80 89.80 0.94

5 89.25 89.12 89.17 89.20 0.92

6 90.12 90.10 90.10 90.10 0.93

7 88.53 88.65 88.49 88.50 0.92

8 90.60 90.60 90.60 90.60 0.94

9 89.63 89.49 89.55 89.60 0.93

10 89.82 89.75 89.78 89.80 0.92

Average (%) 89.53 89.52 89.50 89.52 0.93

From Table 6, the proposed strategy using SVM achieved the average accuracy as

89.7% with 89.77% precision and 89.7% sensitivity. The ROC can also be seen in Figure 2

for SVM based classifier. Similarly, the accuracy using the Rotation Forest classifier on the

proposed feature set achieved up to 86.25% with 86.25% precision and 86.24% sensitivity

as shown in Table 7. Figure 3 also depicts the ROC of the rotation forest classifier. Simi‐

larly, the proposed strategy using Random Forest achieved an average accuracy of 89.96%

with 89.97% precision and 89.96% sensitivity as shown in Table 8. The ROC can also be

seen in Figure 4 for Random Forest‐based classifier. Finally, the Naive Bayes classifier

accuracy can be seen in Table 8, where the average detection rate is 89.52% with 89.53%

precision and 89.52% sensitivity. The ROC graph of Naïve Bayes is shown in Figure 5.

Figure 2. Receiver operating characteristic (ROC) achieved by the proposed method on SVM classifier. Figure 2. Receiver operating characteristic (ROC) achieved by the proposed method on SVM classifier.

The overall performance comparison of the proposed and Zhu et al. [9] can be seen
in Table 10. A graphical representation of the aforementioned evaluation is depicted in
Figure 6, where the Random Forest algorithm is considered as the best classifier in terms
of detection accuracies. It is also notable that the proposed scheme achieves a similar set
of accuracies on SVM and Rotation Forest models as compared to Zhu et al. [9] while
incorporating the lower number of permission feature sets resulted in Table 10.

Symmetry 2022, 14, 718 14 of 19Symmetry 2022, 13, x FOR PEER REVIEW 14 of 19

Figure 3. Receiver operating characteristic (ROC) achieved by the proposed method on rotation forest classifier.

Figure 4. Receiver operating characteristic (ROC) achieved by the proposed method on Random Forest classifier.

Figure 3. Receiver operating characteristic (ROC) achieved by the proposed method on rotation
forest classifier.

Symmetry 2022, 13, x FOR PEER REVIEW 14 of 19

Figure 3. Receiver operating characteristic (ROC) achieved by the proposed method on rotation forest classifier.

Figure 4. Receiver operating characteristic (ROC) achieved by the proposed method on Random Forest classifier. Figure 4. Receiver operating characteristic (ROC) achieved by the proposed method on Random
Forest classifier.

Table 10. Performance comparison of the proposed and Zhu et al. [9] using 10-fold cross-validation.

Classifier
Zhu et al. [9] Approach Proposed Approach

of
Features

Precision
(%)

Sensitivity
(%)

Accuracy
(%)

of
Features

Precision
(%)

Sensitivity
(%)

Accuracy
(%)

SVM

22

84.13 ± 3.5 86.18 ± 2.3 84.93 ± 1.8

5

89.7 ± 0.8 89.7 ± 0.85 89.7 ± 0.9

Rotation Forest 88.16 ± 1.80 88.4 ± 2.76 88.26 ± 1.73 86.25 ± 1.3 86.24 ± 1.4 86.25 ± 1.25

Random Forest - - - 89.97 ± 1.25 89.96 ± 1.5 89.96 ± 1.5

Naïve Bayes - - - 89.53 ± 0.75 89.52 ± 1.1 89.52 ± 1.0

Reduction 0% 77.23%

Symmetry 2022, 14, 718 15 of 19Symmetry 2022, 13, x FOR PEER REVIEW 15 of 19

Figure 5. Receiver operating characteristic (ROC) achieved by the proposed method on Naive Bayes classifier.

The overall performance comparison of the proposed and Zhu et al. [9] can be seen

in Table 10. A graphical representation of the aforementioned evaluation is depicted in

Figure 6, where the Random Forest algorithm is considered as the best classifier in terms

of detection accuracies. It is also notable that the proposed scheme achieves a similar set

of accuracies on SVM and Rotation Forest models as compared to Zhu et al. [9] while

incorporating the lower number of permission feature sets resulted in Table 10.

Table 10. Performance comparison of the proposed and Zhu et al. [9] using 10‐fold cross‐validation.

Classifier

Zhu et al. [9] Approach Proposed Approach

of Fea‐

tures

Precision

(%)

Sensitivity

(%)

Accuracy

(%)

of Fea‐

tures

Precision

(%)

Sensitivity

(%)

Accuracy

(%)

SVM

22

84.13 ± 3.5 86.18 ± 2.3 84.93 ± 1.8

5

89.7 ± 0.8 89.7 ± 0.85 89.7 ± 0.9

Rotation Forest 88.16 ± 1.80 88.4 ± 2.76 88.26 ± 1.73 86.25 ± 1.3 86.24 ± 1.4 86.25 ± 1.25

Random Forest ‐ ‐ ‐ 89.97 ± 1.25 89.96 ± 1.5 89.96 ± 1.5

Naïve Bayes ‐ ‐ ‐ 89.53 ± 0.75 89.52 ± 1.1 89.52 ± 1.0

Reduction 0% 77.23%

Figure 6. Detection accuracy of the proposed and Zhu et al. [9] schemes on various machine learning

classifiers.

Figure 5. Receiver operating characteristic (ROC) achieved by the proposed method on Naive
Bayes classifier.

Symmetry 2022, 13, x FOR PEER REVIEW 15 of 19

Figure 5. Receiver operating characteristic (ROC) achieved by the proposed method on Naive Bayes classifier.

The overall performance comparison of the proposed and Zhu et al. [9] can be seen

in Table 10. A graphical representation of the aforementioned evaluation is depicted in

Figure 6, where the Random Forest algorithm is considered as the best classifier in terms

of detection accuracies. It is also notable that the proposed scheme achieves a similar set

of accuracies on SVM and Rotation Forest models as compared to Zhu et al. [9] while

incorporating the lower number of permission feature sets resulted in Table 10.

Table 10. Performance comparison of the proposed and Zhu et al. [9] using 10‐fold cross‐validation.

Classifier

Zhu et al. [9] Approach Proposed Approach

of Fea‐

tures

Precision

(%)

Sensitivity

(%)

Accuracy

(%)

of Fea‐

tures

Precision

(%)

Sensitivity

(%)

Accuracy

(%)

SVM

22

84.13 ± 3.5 86.18 ± 2.3 84.93 ± 1.8

5

89.7 ± 0.8 89.7 ± 0.85 89.7 ± 0.9

Rotation Forest 88.16 ± 1.80 88.4 ± 2.76 88.26 ± 1.73 86.25 ± 1.3 86.24 ± 1.4 86.25 ± 1.25

Random Forest ‐ ‐ ‐ 89.97 ± 1.25 89.96 ± 1.5 89.96 ± 1.5

Naïve Bayes ‐ ‐ ‐ 89.53 ± 0.75 89.52 ± 1.1 89.52 ± 1.0

Reduction 0% 77.23%

Figure 6. Detection accuracy of the proposed and Zhu et al. [9] schemes on various machine learning

classifiers.

Figure 6. Detection accuracy of the proposed and Zhu et al. [9] schemes on various machine
learning classifiers.

It is evident that SVM, Random Forest, and Naïve Bayes classifier using the proposed
set of features gives the best accuracy ratings of 89.7 ± 0.25%. From Table 10, it is also
notable that the proposed scheme successfully reduces the number of permissions to 77.2%
while maintaining similar detection accuracies. From the above comparison, it can be seen
that the proposed approach outperforms the Zhu et al. [9] approach in terms of accuracy,
where the Random Forest classifier turned out to be the best performing model.

Meanwhile, we also evaluated the Google-based dangerous permissions feature set
using SVM, rotation forest, random forest, and Naïve Bayes classifiers as seen in Table 11.
It is also evident that the proposed parameters set has similar detection accuracies while
having the minimum 5× parameters permissions set instead of 22×, around 77.2% fewer
features than in Table 10. Similarly, the overall performance comparison of the proposed
and other existing approaches in the number of permissions and detection accuracies is
shown in Figure 7. It is also depicted that the proposed strategy achieved ~90% detection
accuracy while only employing the 5× permissions as compared to the existing approaches.

Symmetry 2022, 14, 718 16 of 19

Table 11. Detection results using Google dangerous permission on SVM, random forest, rotation
forest, and Naïve Bayes classifier using 10-fold cross-validation.

Classifier Precision (%) Sensitivity
(TPR, %)

F1—Score
(%)

Accuracy
(%)

SVM 89.79 89.72 89.71 89.72

Rotation Forest 88.10 88.10 88.03 88.04

Random Forest 90.93 90.94 90.92 90.93

Naïve Bayes 76.58 68.59 65.99 68.58
Symmetry 2022, 13, x FOR PEER REVIEW 17 of 20

Figure 7. Comparisons of number of permissions and accuracy of the proposed and existing [3-5,

7, 8-9] approaches.

4.3. Discussion

Malware detection systems are required to have a heightened performance metric

which can be achieved by either improving the dataset collection process or by improving

the selected features. For high performance, a significant aspect of the proposed method

is the selection of significant permissions since they are proven to be an impacting figure

considered by the literature. An App needs to acquire user consent to perform the neces-

sary activities, and therefore, making permissions is the main area of focus in our study.

Another significance of the proposed method which targets the other aspect of evaluation

performance lies in the careful selection of the dataset samples. Moreover, the proposed

scheme is trained and validated on a large dataset comprising of 10,000 APKs acquired

from authentic Google Play Store and VirusShare sources. Upon comparison of our find-

ings with the existing and benchmark (Zhu et al. [9]) methods, it is observed that the pro-

posed strategy achieves almost similar detection accuracies on SVM and Rotation Forest

classifiers by employing the proposed effective permissions set as shown in Table 3. Iden-

tifying the lower number of feature sets helps the classifier to achieve the high detection

accuracies that can reduce the computation overhead and provide a low-cost malware

detection solution.

4.4. Applicability of PerDRaML

The proposed approach can differentiate malicious applications from benign ones

that are based on the requested permissions during the installation process. The proposed

approach can be utilized in many ways. For example, the proposed scheme can be inserted

as a module to the end devices as an anti-malware application which upon every new

installation, extracts the permissions from the APK and passes the data to the trained clas-

sifier. The data can be used for classification that is based on the results, either allowing

the installation or reporting the detection to the end-users. It can also be implemented on

the application stores to categorize the applications being uploaded before becoming

available to the general public. The proposed approach can also be utilized by implement-

ing both host-based and market-based implementation to provide further security en-

hancements

5. Conclusions

Figure 7. Comparisons of number of permissions and accuracy of the proposed and existing [3–5,7–9]
approaches

4.3. Discussion

Malware detection systems are required to have a heightened performance metric
which can be achieved by either improving the dataset collection process or by improving
the selected features. For high performance, a significant aspect of the proposed method
is the selection of significant permissions since they are proven to be an impacting figure
considered by the literature. An App needs to acquire user consent to perform the neces-
sary activities, and therefore, making permissions is the main area of focus in our study.
Another significance of the proposed method which targets the other aspect of evaluation
performance lies in the careful selection of the dataset samples. Moreover, the proposed
scheme is trained and validated on a large dataset comprising of 10,000 APKs acquired
from authentic Google Play Store and VirusShare sources. Upon comparison of our findings
with the existing and benchmark (Zhu et al. [9]) methods, it is observed that the proposed
strategy achieves almost similar detection accuracies on SVM and Rotation Forest classifiers
by employing the proposed effective permissions set as shown in Table 3. Identifying the
lower number of feature sets helps the classifier to achieve the high detection accuracies that
can reduce the computation overhead and provide a low-cost malware detection solution.

4.4. Applicability of PerDRaML

The proposed approach can differentiate malicious applications from benign ones
that are based on the requested permissions during the installation process. The proposed
approach can be utilized in many ways. For example, the proposed scheme can be inserted

Symmetry 2022, 14, 718 17 of 19

as a module to the end devices as an anti-malware application which upon every new
installation, extracts the permissions from the APK and passes the data to the trained
classifier. The data can be used for classification that is based on the results, either allowing
the installation or reporting the detection to the end-users. It can also be implemented on the
application stores to categorize the applications being uploaded before becoming available
to the general public. The proposed approach can also be utilized by implementing both
host-based and market-based implementation to provide further security enhancements

5. Conclusions

Mobile malware has recently been posing a great security threat to the mobile ecosys-
tem. Machine learning algorithms required heightened accuracies to address the security
issues that are generally focused on an impactful selection of features as well as the efficient
performance of the selected classifiers. In this paper, we have statically analyzed the An-
droid ecosystem to show that it is possible to achieve a higher level of accuracy by reducing
the number of permissions while maintaining high efficiency and effectiveness. We have
selected a base approach proposed by Zhu et al. where we have trained the Rotation Forest
classifier to perform detection on the features selected from the permissions, system API
calls and events, and other categories. We extensively studied Zhu et al. and Google’s
dangerous permission sets through various experiments to identify the most significant
number of permission sets to improve the efficiency without compromising the detection
accuracy. With the permissions dataset, we evaluated the different classifiers—Random
Forest, SVM, Naïve Bayes, and Rotation Forest. The experimentation results showed
that all classifiers achieved above 89% accuracy by employing the proposed permission
dataset. From the proposed evaluation, we concluded that an effective level of detection
accuracy could also be achieved using fewer significant permission sets. In the future, the
collected dataset will be enhanced, and the proposed scheme will be evaluated on other
supervised and unsupervised (without labeling) machine learning classifiers to improve
the detection accuracies.

Author Contributions: Conceptualization and implementation, F.A. and M.H.; validation, Q.R.;
investigation, R.M.; writing—draft preparation, A.W.A.W.; writing—review and editing, K.-H.J.;
supervision, M.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A3049788)
and Brain Pool program funded by the Ministry of Science and ICT through the National Research
Foundation of Korea (2019H1D3A1A01101687, 2021H1D3A2A01099390); this work was supported
by the National University of Sciences and Technology, Islamabad, Pakistan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The collected malware dataset and the proposed PerDRaML scheme
implementation are available [27,28]. Google Play Python API can be seen in [32].

Acknowledgments: We thank the anonymous reviewers for their valuable suggestions that improved
the clarity of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Feizollah, A.; Anuar, N.B.; Salleh, R.; Suarez-Tangil, G.; Furnell, S. AndroDialysis: Analysis of Android Intent Effectiveness in

Malware Detection. Comput. Secur. 2017, 65, 121–134. [CrossRef]
2. Jannath, N.O.S.; Bhanu, S.M.S. Detection of repackaged Android applications based on Apps Permissions. In Proceedings of

the 2018 4th International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 15–17 March
2018; pp. 1–8.

3. Sandeep, H.R. Static analysis of android malware detection using deep learning. In Proceedings of the 2019 International
Conference on Intelligent Computing and Control Systems (ICCS), Secunderabad, India, 15–17 May 2019; pp. 841–845.

http://doi.org/10.1016/j.cose.2016.11.007

Symmetry 2022, 14, 718 18 of 19

4. Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-An, W.; Ye, H. Significant Permission Identification for Machine-Learning-Based Android
Malware Detection. IEEE Trans. Ind. Inform. 2018, 14, 3216–3225. [CrossRef]

5. Wang, Z.; Li, K.; Hu, Y.; Fukuda, A.; Kong, W. Multilevel permission extraction in android applications for malware detection. In
Proceedings of the 2019 International Conference on Computer, Information and Telecommunication Systems (CITS), Beijing,
China, 28–31 August 2019; pp. 1–5.

6. Fan, M.; Liu, J.; Luo, X.; Chen, K.; Tian, Z.; Zheng, Q.; Liu, T. Android Malware Familial Classification and Representative Sample
Selection via Frequent Subgraph Analysis. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1890–1905. [CrossRef]

7. Fatima, A.; Kumar, S.; Dutta, M.K. Host-Server-Based Malware Detection System for Android Platforms Using Machine Learning.
In Advances in Computational Intelligence and Communication Technology; Springer: Singapore, 2021; pp. 195–205.

8. Sun, Y.; Xie, Y.; Qiu, Z.; Pan, Y.; Weng, J.; Guo, S. Detecting android malware based on extreme learning machine. In Pro-
ceedings of the 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive
Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), Orlando, FL, USA, 6–10 November 2017; pp. 47–53.

9. Zhu, H.-J.; You, Z.-H.; Zhu, Z.-X.; Shi, W.-L.; Chen, X.; Cheng, L. DroidDet: Effective and robust detection of android malware
using static analysis along with rotation forest model. Neurocomputing 2018, 272, 638–646. [CrossRef]

10. Faruki, P.; Laxmi, V.; Bharmal, A.; Gaur, M.; Ganmoor, V. AndroSimilar: Robust signature for detecting variants of Android
malware. J. Inf. Secur. Appl. 2015, 22, 66–80. [CrossRef]

11. Suarez-Tangil, G.; Dash, S.K.; Ahmadi, M.; Kinder, J.; Giacinto, G.; Cavallaro, L. Droidsieve: Fast and accurate classification of
obfuscated android malware. In Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy,
Scottsdale, AZ, USA, 22–24 March 2017; pp. 309–320.

12. Tong, S.; Chang, E. Support vector machine active learning for image retrieval. In Proceedings of the ninth ACM international
conference on Multimedia, New York, NY, USA, 30 September–5 October 2011; pp. 107–118.

13. Qiao, M.; Sung, A.H.; Liu, Q. Merging permission and api features for android malware detection. In Proceedings of the 2016 5th
IIAI international congress on advanced applied informatics (IIAI-AAI), Kumamoto, Japan, 10–14 July 2016; pp. 566–571.

14. Wu, D.-J.; Mao, C.-H.; Wei, T.-E.; Lee, H.-M.; Wu, K.-P. Droidmat: Android malware detection through manifest and api calls
tracing. In Proceedings of the 2012 Seventh Asia Joint Conference on Information Security, Washington, DC, USA, 9–10 August
2012; pp. 62–69.

15. Wagstaff, K.; Cardie, C.; Rogers, S.; Schrödl, S. Constrained k-means clustering with background knowledge. Icml 2001,
1, 577–584.

16. Altman, N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46, 175–185.
17. Wang, W.; Zhao, M.; Gao, Z.; Xu, G.; Xian, H.; Li, Y.; Zhang, X. Constructing Features for Detecting Android Malicious

Applications: Issues, Taxonomy and Directions. IEEE Access 2019, 7, 67602–67631. [CrossRef]
18. Guerra-Manzanares, A.; Bahsi, H.; Nõmm, S. KronoDroid: Time-based Hybrid-featured Dataset for Effective Android Malware

Detection and Characterization. Comput. Secur. 2021, 110, 102399. [CrossRef]
19. Jannath Nisha, O.S.; Mary Saira Bhanu, S. Detection of malicious Android applications using Ontology-based intelligent model in

mobile cloud environment. J. Inf. Secur. Appl. 2021, 58, 102751. [CrossRef]
20. Bhandari, S.; Panihar, R.; Naval, S.; Laxmi, V.; Zemmari, A.; Gaur, M.S. Sword: Semantic aware android malware detector. J. Inf.

Secur. Appl. 2018, 42, 46–56. [CrossRef]
21. Karbab, E.B.; Debbabi, M.; Derhab, A.; Mouheb, D. MalDozer: Automatic framework for android malware detection using deep

learning. Digit. Investig. 2018, 24, S48–S59. [CrossRef]
22. Mathur, A.; Podila, L.M.; Kulkarni, K.; Niyaz, Q.; Javaid, A.Y. NATICUSdroid: A malware detection framework for Android

using native and custom permissions. J. Inf. Secur. Appl. 2021, 58, 102696. [CrossRef]
23. Androguard: Reverse Engineering, Malware Analysis of Android Applications. Available online: https://github.com/

androguard/androguard (accessed on 20 January 2021).
24. Razgallah, A.; Khoury, R.; Hallé, S.; Khanmohammadi, K. A survey of malware detection in Android apps: Recommendations

and perspectives for future research. Comput. Sci. Rev. 2021, 39, 100358. [CrossRef]
25. Sihag, V.; Vardhan, M.; Singh, P. A survey of android application and malware hardening. Comput. Sci. Rev. 2021, 39, 100365.

[CrossRef]
26. Zhang, W.; Luktarhan, N.; Ding, C.; Lu, B. Android Malware Detection Using TCN with Bytecode Image. Symmetry 2021,

13, 1107. [CrossRef]
27. PerDRaML. Available online: https://github.com/fahadakbar24/android-malware-detection (accessed on 8 February 2022).
28. Malware Dataset. Available online: https://github.com/fahadakbar24/android-malware-detection-dataset (accessed on 22

January 2021).
29. Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K. Xgboost: Extreme Gradient Boosting; R Package Version

0.4-2 1; 2015; pp. 1–4. Available online: https://cran.microsoft.com/snapshot/2017-12-11/web/packages/xgboost/vignettes/
xgboost.pdf (accessed on 27 October 2021).

30. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
31. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http://www.

deeplearningbook.org (accessed on 28 October 2021).

http://doi.org/10.1109/TII.2017.2789219
http://doi.org/10.1109/TIFS.2018.2806891
http://doi.org/10.1016/j.neucom.2017.07.030
http://doi.org/10.1016/j.jisa.2014.10.011
http://doi.org/10.1109/ACCESS.2019.2918139
http://doi.org/10.1016/j.cose.2021.102399
http://doi.org/10.1016/j.jisa.2021.102751
http://doi.org/10.1016/j.jisa.2018.07.003
http://doi.org/10.1016/j.diin.2018.01.007
http://doi.org/10.1016/j.jisa.2020.102696
https://github.com/androguard/androguard
https://github.com/androguard/androguard
http://doi.org/10.1016/j.cosrev.2020.100358
http://doi.org/10.1016/j.cosrev.2021.100365
http://doi.org/10.3390/sym13071107
https://github.com/fahadakbar24/android-malware-detection
https://github.com/fahadakbar24/android-malware-detection-dataset
https://cran.microsoft.com/snapshot/2017-12-11/web/packages/xgboost/vignettes/xgboost.pdf
https://cran.microsoft.com/snapshot/2017-12-11/web/packages/xgboost/vignettes/xgboost.pdf
http://doi.org/10.1023/A:1010933404324
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Symmetry 2022, 14, 718 19 of 19

32. Google Play Python API. Available online: https://github.com/fahadakbar24/google-play-api (accessed on 17 November 2021).
33. Sotiroudis, S.P.; Goudos, S.K.; Siakavara, K. Feature Importances: A Tool to Explain Radio Propagation and Reduce Model

Complexity. Telecom 2020, 1, 114–125. [CrossRef]
34. Nasir, M.; Javed, A.R.; Tariq, M.A.; Asim, M.; Baker, T. Feature engineering and deep learning-based intrusion detection

framework for securing edge IoT. J. Supercomput. 2022, 78, 1–15. [CrossRef]

https://github.com/fahadakbar24/google-play-api
http://doi.org/10.3390/telecom1020009
http://doi.org/10.1007/s11227-021-04250-0

	Introduction
	Literature Review
	The Proposed Methodology
	Malicious and Benign Samples Collection
	Constructing the Parameter Feature Set
	Filtering, Finalizing, and Extracting the Core Features
	Selection of Effective Permissions
	Generating Dataset

	Malware Detection by Employing Machine Learning Classification Models

	Performance Evaluation
	Evaluation Measures
	Evaluating PerDRaML Effectiveness
	Discussion
	Applicability of PerDRaML

	Conclusions
	References

