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A B S T R A C T   

Automatic Text Summarization (ATS) is an important area in Natural Language Processing (NLP) 
with the goal of shortening a long text into a more compact version by conveying the most 
important points in a readable form. ATS applications continue to evolve and utilize effective 
approaches that are being evaluated and implemented by researchers. State-of-the-Art (SotA) 
technologies that demonstrate cutting-edge performance and accuracy in abstractive ATS are 
deep neural sequence-to-sequence models, Reinforcement Learning (RL) approaches, and 
Transfer Learning (TL) approaches, including Pre-Trained Language Models (PTLMs). The graph- 
based Transformer architecture and PTLMs have influenced tremendous advances in NLP appli-
cations. Additionally, the incorporation of recent mechanisms, such as the knowledge-enhanced 
mechanism, significantly enhanced the results. This study provides a comprehensive review of 
recent research advances in the area of abstractive text summarization for works spanning the 
past six years. Past and present problems are described, as well as their proposed solutions. In 
addition, abstractive ATS datasets and evaluation measurements are also highlighted. The paper 
concludes by comparing the best models and discussing future research directions.   

1. Introduction 

Text Generation (TG) tasks are one of the most NLP challenging tasks because it requires an automated understanding of the text 
and an accurate semantic and lexical analysis of its words [1]. These tasks include Machine Translation (MT), Image Captioning (IC), 
Automatic Text Summarization (ATS), among others. 

ATS is the process of generating a short text that covers the main parts of a longer document. A good summary considers important 
aspects, such as readability, coherency, syntax, non-redundancy, sentence ordering, conciseness, information diversity, and infor-
mation coverage [2]. The two main methods of ATS are extractive (selection and combination), and abstractive (paraphrasing). The 
abstractive type of summarization is more challenging and requires understanding at a higher-level to ensure the fluency, saliency, 
coherency, information correctness, and novelty of the resulting summary [3]. The combination of both methods recently showed 
promising results by first extracting most of the highlights and then reformulating them to create a final abstractive summary. 

Recently, Deep Learning (DL) approaches have shown significant progress in various NLP applications. Specifically, deep neural 
sequence-to-sequence models have been used extensively in various TG tasks. 

Deep encoder-decoder architecture is the most widely used method for applying sequence-to-sequence models. Despite significant 
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improvements in the results of ATS applications, deep sequence-to-sequence models suffer from several problems. For example, they 
cannot handle long-term dependencies efficiently. Moreover, they cannot be parallelized due to their sequential nature. Other issues 
include low-novelty, exposure-bias problem, loss/evaluation mismatch, and lack of generalization. 

Subsequently, Reinforcement Learning (RL) approaches were used to overcome some problems of deep sequence-to-sequence 
models and improve the quality of their results. RL’s research in ATS has mainly focused on developing novel rewards to allow 
models to refer to principles other than ground-truth summaries. 

Nowadays, NLP research is witnessing a golden era by leveraging Transfer Learning (TL) and Pre-Trained Language Models 
(PTLMs). The self-attention architecture, Transformer [4], is the first transduction model based on the self-attention mechanism to 
represent its source data and results without the use of sequence-based Recurrent Neural Networks (RNNs) or Convolutional Neural 
Networks (CNNs). The self-supervised architecture, Transformer, has solved the previous problems of sequence-to-sequence models. It 
can efficiently handle long-dependencies using a parallel-based design that allows parallelization, which drastically increases 

Table 1 
Text Summarization Categories.  

Category Types Description Example 

Form Extractive Summary Highlighting [27] 
Abstractive Summary Rewriting [28] 
Compressive Summary Deleting unimportant words/sentences from an extractive summary [24] 

Length Short Document Summary Generating short summaries from short documents [18] 
Long Document Summary Generating long summaries from long documents [29] 

Output Text Summary The summary is generated in a normal text [28] 
Other Formats Summary e.g., numbered, bulleted summary, word graph [30] 

Input Single-Document Summary Summarizing one document [28] 
Multi-Document Summary Summarizing clusters of documents of the same topic [24] 

Context Generic Summary Summaries based on standard generic datasets (news datasets) [16] 
Domain-Specific Summary Summaries based on some domain dataset as scientific datasets [31] 
Query-based Summary Summaries based on a query, such as search engines [32] 

Language Multi-Lingual Summary The source document is in several languages, and the summary is also generated in these 
languages 

[33] 

Mono-Lingual Summary The language of source and target documents are the same [28] 
Cross-Lingual Summary The source and summary documents are written in two different languages [34] 

Personal Personalized Summary Contains the specific information that the user desires and prefers [35] 
Update Summary Considering the user has the basic information about a topic, summarizing only the 

current updates regarding that topic 
[36] 

Scientific Articles 
Summarization 

Title Generation Based on the article’s abstract as an input [37] 
Abstract Generation Based on the article’s body as an input [38] 
Introduction summarization Extracting salient sentences in the introduction [39] 
Citation summarization Generating related work section [40] 
Highlight statements Generating highlight statements of articles [41] 
Multi Article Summarization Summarizing multi scientific articles [42,43] 
Scientific Survey Generation Generating a survey of many papers on a specific problem or domain [44] 
Presentation slides 
Generation 

Automatically creating presentation slides of a specific article [45] 

Medical Reports 
Summarization 

Radiology Reports 
Summarization 

Automatically summarizing of radiology findings into natural language impression 
statements 

[46] 

Clinical Abstractive 
Summarization 

Extracting clinical findings from clinical reports [47] 

Others Email-based summary Summarizing, sorting, and archiving email conversations [48] 
Guided summary Incorporating different kinds of important information from the source text to guide the 

generation process, control the output, and improve the quality of results 
[49] 

Sentiment-based summary Summarizing user’s opinions, feelings, or reviews based on social networking sites, 
forums, blogs, etc. 

[50] 

Comparative Summarization Summarizing the differences, similarities, or hierarchical relations among multiple 
documents 

[51] 

Evolutionary Timeline 
Summarization 

Generating a summary for dates in a timeline for the evolution of events [52] 

Microblog summarization A multi-document summarization which has been widely studied in Information 
Retrieval (IR) 

[53] 

Spoken data summarization Such as summarizing meetings and conservations with fixed templates and procedures [54] 
Opinion Summarization Generating summaries with sentiment and without redundancy [55] 
Community Answer 
Summarization 

Summarizing millions of question-answer pairs contributed by community users, such as 
QUORA and StackOverflow 

[56] 

Student responses to 
reflection prompt 

Summarizing student responses to reflection prompts for large courses such as 
introductory STEM, MOOCs. 

[57] 

Movie Script Summarization Highlighting major scenes representative of the story and its progression [58] 
Entity description in 
knowledge graphs 

To link structured data such as Google’s Knowledge Graph, Facebook’s Open Graph, and 
W3C’s Linked RDF Data with webpages text and form a unified Web 

[59] 

Source Code summarizing 
and description 

Writing brief, natural language descriptions of source code behaviour throughout the 
program’s run-time 

[60]  
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computation speed and generates more accurate summaries with higher scores in the ROUGE metric [5], which is the most widely used 
abstractive ATS metric. 

Based on this architecture, many large-scale PTLMs are trained on large corpora of texts developed by large organizations, such as 
Google’s BERT [6], PEGASUS [7], T5 [8], and Switch [9], Facebook’s BART [10], and Open AI’s Generative Pre-Training (GPT) [11], 
GPT-2 [12], and GPT-3 [13]. Essentially, PTLMs are trained to estimate the combined probability of any token arrangements. PTLMs 
have shown remarkable success in a wide range of natural language understanding and generative tasks. The great benefit is that these 
PTLMs can be fine-tuned to solve a vast amount of downstream NLP tasks, including abstractive text summarization, utilizing the 
learnt universal language representations. 

The contributions of this study can be summarized as follows:  

1 ATS overview: We provide a full review of the ATS, which includes:  
a A taxonomy with different categories.  
b A brief history of models’ evolution.  
c Evaluation measurements review.  
d Comparisons of datasets.  
e Comparisons and relationship of the ATS and MT research fields.  
2 Models comprehensive review: We collected an abundance of resources on the main topics of this study and provide a comprehensive 

review of SotA research works, starting with Deep neural sequence-to-sequence models, then RL approaches, and finally TL ar-
chitectures, including PTLMs.  

3 Challenges: We analyze the past and current challenges faced by researchers in the areas this study focuses on as well as their 
proposed solutions.  

4 Comparisons: We provide different kinds of comparisons for models that have been investigated from different perspectives: 
theoretical, practical, and the experimental results. Subsequentially, the top-performing models are highlighted.  

5 Future trends: We suggest and discuss possible future research directions. 

The following sections are organized as follows; Section 2 describes the background of ATS, DL, RL, and TL. In Sections 3, 4, and 5, 
details of how the DL, RL, and TL approaches are being applied in abstractive ATS are discussed. Details of abstractive ATS datasets are 
described in Section 6. Abstractive ATS evaluation metrics and comparisons between the top-perfrming models are presented in 
Section 7. Section 8 discusses some abstractive ATS research challenges, presents the relationship between ATS and MT research, and 
highlights trends in future research. Section 9 concludes this review. 

2. Background 

2.1. ATS taxonomy 

There are two main types of ATS which are extractive and abstractive. In the extractive type of ATS, the summary concatenates the 
original document’s most important sentences without any modification. On the other hand, abstractive summaries are completely 
new sentences with the same meaning as the ideas of the original document. Technically, the extractive type can be loosely defined as 
binary classification, i.e., whether the source article’s token is to be included in the generated summary. On the other hand, abstractive 
summarization requires more sophisticated approaches to generate a novel text. Extractive method is considered to be more simplistic, 
thus, its research is being explored more widely in contrast to the abstractive ATS research. 

Other categories can be categorized based on different perspectives, including length, input, output, purpose, language, and more. 
Table 1 summarizes the different categories and types of ATS. 

Some types of ATS can be combined, while others are incompatible. For example, several researchers nowadays demonstrate that 
the hybrid model of extractive and abstractive types of ATS achieves better results than the stand-alone abstractive ATS model using 
sequence-to-sequence techniques [14–18], and RL approaches [19–23]. Another example, Wang et al., [24] combined compression, 
query-based, and multi-document summarizations into one summarizer. On the other hand, search engines, which are query-based 
summarizations, cannot summarize multi-documents even with advanced information retrieval tools. 

Generally, most researchers work on the English language, news context, and text output types of ATS. This study focuses on 
research works related to abstractive, short- and long- document, single-document, textual, generic, and English types of ATS. From 
Table 1, some of these categories were collected by [2,25], and [26] survey papers. 

2.2. Why abstractive ATS? 

In recent years, vast quantity of documents is available on the web, and the number is growing exponentially over time, which 
creates the problem of information overload. Hence, reading only the most important information while skipping the minor parts in a 
short time will save the time and effort for readers to read various “summarized” documents for a given field. For example, in the field 
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of scientific articles, a large number of research papers are published daily, for example, Pubmed publishes 1.5 papers per minute1. 
Moreover, hot research areas, such as COVID-19 research, require speeding up the process of summarizing details and findings to 
bridge the gap between researchers. 

Currently, ATS is one of the most popular research areas in NLP. ATS can be categorized into two main types. The first being 
extractive, i.e., highlighting, and the second being abstractive, i.e., paraphrasing. Clearly, abstractive summarization is more chal-
lenging as it deals with higher-level aspects such as semantic representation, surface realization, and content organization [25]. 
Moreover, abstractive ATS requires an automated understanding of the input text beyond the meanings of words and sentences, which 
is a challenging task. Generally, the main requirements for abstractive summaries include fluency, saliency, coherency, information 
correctness, and novelty [3]. 

Compared to extractive summarization, the abstractive type of ATS is distinguished by its readability, consistency, and conciseness. 
However, it is more complex, requires higher computational costs, and has the tendency to produce trivial summaries with factual 
mistakes, redundant information, and major information loss. However, recent advances in abstractive ATS research have shown 
impressive results that overcome these shortcomings, particularly with the use of modern approaches such as PTLMs and the 
knowledge-enhanced mechanism. Additionally, a multi-document summarization experiment made by Genest et al., [61] to compare 
human-written summaries showed that the performance of pure extractive summaries is very low compared to abstractive summaries. 

Recently, there has been an increasing interest in utilizing both the extractive and abstractive types of ATS, by combining them 
together to enhance the quality of the resulting final abstractive summary. This mixed-method is applied first using DL-based tech-
niques; pointer-generator [14–18] and knowledge-enhanced [49,62,63], which are discussed in Section 3.1.3 and Section 3.1.5, 
respectively and then by RL-based fusion techniques [19–23,64], discussed in Section 4.2. In this article, based on the final result 
generated, we use the term “abstractive ATS models” to refer to both mixed models and pure abstractive ATS models as the end result 
of both models is the same, which is an abstractive summary with new phrases. 

In general, humans tend to generate abstractive forms using the mixed approach when writing their summaries. They first extract 
the most salient parts and kinds of information from the text and then paraphrase them into a readable and coherent form. There is no 
doubt that human-generated summaries are more reliable and efficient because human cognition and experience play a primary role in 
the summarization process. Also, human summarizers can efficiently interpret a document, prioritize important sentences, and create 
diverse coherent paraphrased versions of the summary [65]. However, manual text summarization is time and effort consuming. 

These concerns sparked interest in the research of abstractive ATS. That is why massive amounts of research have been conducted 
in the abstractive text summarization field, covering all its aspects. However, abstractive ATS research still requires more effort in 
attempting new strategies to reach the level of human-generated summaries. 

2.3. Deep neural sequence-to-sequence 

In recent years, deep neural sequence-to-sequence models have proven to be the best models for TG tasks, including MT, IC, 
Question Answering (QA), and ATS. Neural sequence-to-sequence models are used to map the input sequence from one form to another 
to generate the desired results. For example, in MT [66] the text sequence is changed from one language to another. In ATS [28], the 
input is a long text sequence, and the output is a short length sequence. 

The Encoder-Decoder architecture is the main approach for modelling sequence-to-sequence models. The encoder network, which 
is a set of nodes, takes the input sequence timesteps (tokens) and produces some encryption (hidden representation) which can be 
understood by the decoder network, which is also a collection of nodes, to generate the desired output based on that representation. 

Specifically, in neural sequence-to-sequence models applied by encoder-decoder architectures, the input sequence is understood by 
the encoder and converted into a fixed-length vector representation (at the word-, sentence-, or document-level). Then it is forwarded 
to a decoder that translates the vector to generate a new version of the sequence. Fig. 1 describes the basic encoder-decoder archi-
tecture. For TG tasks, usually, we have two sentences; a source sentence, x, with n tokens, and a target sentence, y, with m tokens such 
that x= (x1, x2, x3, … , xn) and y= (y1, y2, y3, … , ym). The pair (x,y)∈(X,Y) is called the sentence pair, where X is the source domain and 
Y is the target domain. 

For abstractive ATS, x and y tokens come from the same vocabulary, and n>m. In architectures based on Recurrent Neural Networks 
(RNNs), discussed in the next section, the tokens of x are fed into the encoder sequentially to produce a sequence of hidden state 
vectors, hi: 

hi = RNN(xi, hi− 1) (1)  

On the other hand, the decoder takes these encoder hidden vectors, h={h1, h2, … , hn} as feature representations of the whole input 
sentence. It generates the output sentence by training to estimate the conditional probability P(y|x,θ), where θ is the parameter to be 
learned by the model, using the log-likelihood objective function O as: 

O(θ, (X,Y)) =
∑

(x,y)∈(X ,Y)

logP(yx, θ) (2) 

However, this scenario can only work efficiently for short sequences and may struggle when dealing with long sequences, such as 

1 https://tac.nist.gov/2014/BiomedSumm/index.html 
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summarizing or translating long articles, such as scientific papers. 
Basic deep neural sequence-to-sequence models of [67] and [68] were the first models that applied on the task of English to French 

translation. This basic architecture, illustrated in Fig. 1, has been strengthened over the past years to solve different issues using 
various mechanisms, such as the mechanisms of attention, copy, coverage, and others. These mechanisms greatly improved TG tasks 
outcomes, especially MT and ATS tasks. Section 3 describes in detail these mechanisms in the field of ATS. 

2.4. Recurrent, convolutional, or attention? 

Sequence data are time-based data where the arrangement of its components, i.e., timesteps, is critical, including number se-
quences, text sequences, video frame sequences, and audio sequences. For example, the order of the words that compose a sentence 
plays an essential role in understanding the whole sentence. 

RNNs [69] are primarily designed in a sequence nature, so they are the most appropriate DL architectures for encoding and 
processing sequence data such as text. RNNs can handle sequence dependencies between input tokens (characters, words, sentences, 
etc.) as well as the variable-length input for unstructured data such as text. Moreover, RNNs are able to generate feedback to prior 
layers to maintain memory inputs. Therefore, the output of some layers can be fed back into the inputs of previous layers, giving RNNs 
the ability to analyse sequential data. 

Unidirectional RNNs can only capture the context based on the token’s history, and they do not consider all the context required 
from the future aspect. This may lead to misleading predictions and, as a result, incorrect information generation. In human 
perception, to predict an unknown word in a sentence, the context of both sides is taken into consideration to ensure the correct 
prediction. Therefore, using bidirectional RNN allows each hidden state to be aware of the contextual information from both di-
rections, i.e., past and future contexts, in order to improve the results. Al-Sabahi et al., [70] proposed a bidirectional encoder-decoder 
model that impressively improves the results of generated summaries and overcomes the problem of generating wrong information. 

However, vanilla RNNs suffer from vanishing and exploding gradient problems during training, and therefore are unable to model 
long-term dependencies when the sequence length increases. Some variants of RNN, called canonical architectures, i.e., Long Short- 
Term Memory (LSTM) [71] and Gated Recurrent Units (GRU) [67], have been found to model long-term dependencies more accurately 
and overcome the gradient-vanishing problem [72] using gating mechanisms. Note that GRU is a simplification of LSTM with simpler 
resources, less complexity and operating cost, and faster training and execution. However, the exploding gradient problem could be 
solved via other techniques such as gradient norm clipping strategy [73]. 

Nevertheless, LSTM and GRU still struggle to handle very long-term memory modeling in very long documents, and thus cannot 
copy or recall information from a long-distance past. Recently, the Rotational Unit of Memory (RUM) [74] has been proposed as a 
representation unit for RNNs that unifies the properties of unitary learning and associative memory to handle memory copying and 
memory recall tasks better than LSTMs and GRUs. RNN based on RUM module models can better handle long-term dependencies 
enhancing ROUGE results when replacing LSTM and GRU. In particular, models that incorporate RUM units lead to larger gradients 
during training resulting in more stable training and better convergence [75]. 

Most researchers choose to use RNNs for NLP tasks, especially for language modelling tasks. RNN variants have gained popularity in 
modelling sequence data due to their sequential nature and their ability to capture unlimited and unstructured contexts. However, 
training with RNN is limited to parallel processing on sequence elements due to their temporal dependencies between hidden states 
[76]. Furthermore, they must also preserve the hidden state of the whole past [77] because of their sequential dependence nature [78], 
and they are still restricted to handle long-term dependencies for very long documents due to their linear path length between the 
output and any of the input tokens [65]. 

Therefore, the feedforward architecture, Convolutional Neural Networks CNNs [79], especially hierarchical CNNs, can be used 
instead as fundamental networks to model sequential data [28,76–78,80]. 

CNNs could efficiently address previous RNN’s issues by computing each element in the sequence in parallel during training and 

Fig. 1. Basic Encoder-Decoder Architecture.  
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evaluation, which, as a result, will lead to improved efficiency and performance of the model [80]. Other advantages of using CNNs 
with sequence-to-sequence models include their ease of optimizing, their linear computational complexity, and more efficient prop-
agation of gradient signals [78]. 

Dauphin et al. [81] apply gated CNNs to language modelling and prove that CNNs allow parallelization over sequential data and 
achieve competitive results with robust gated recurrent LSTM models. Moreover, Zhang et al., [77] apply a hierarchical CNN 
framework for abstractive ATS, outperforming most RNN models, as shown in Section 7.2.1. 

For ATS, both RNN and CNN architectures are used to create abstractive and extractive summaries. For example, IBM has 
developed an abstractive summarization model based on RNN [16]. Also, Facebook has developed a similar model based on CNN [28]. 

More recently, significant improvements in the quality of results and ROUGE scores have been obtained using the Transformer 
architecture [4]. This fully attention-based architecture has been developed based on attention mechanisms only without any use of 
RNN or CNN nodes. Various models can utilize Transformer, such as PTLMs, as an encoder and/or decoder. 

Essentially, Transformer is used to model similarities between input tokens regardless of their positions in parallel by attending 
each token in the input sequence independently using the self-attention mechanism. Therefore, Transformer efficiently solved the 
problems of RNN, i.e., sequential nature and long-term dependencies, as discussed in Section 5. 

As a result, models that are based on the attention-based architecture, Transformer, outperformed RNN- and CNN-based sequence- 
to-sequence models and showed SotA results on various NLP tasks in less training time, including abstractive ATS as illustrated in 
Section 7.2. However, more efficient Transformers and attentions have recently been introduced to overcome the Transformer limi-
tations of quadratic memory complexity, the large number of operations required, and the fixed-length context prerequisite. These 
improvements are discussed in Section 5.1. 

Moreover, combining the advantages of attention and recurrence has recently emerged as a research trend. Many kinds of work 
have been done in NLP research to modify the architecture of internal Transformers and combine it with recurrent units, i.e., GRUs and 
LSTMs. This process showed significant improvements in terms of speed and results in various NLP tasks [82–86], as shown in Section 
5.2.4. 

2.5. Beyond DL 

The popularity of DL nowadays mainly arises after the availability of numerous annotated datasets and the availability of 
computational resources that facilitate the use of parallel processing through modern Single Instruction-Multiple Data (SIMD) hard-
ware accelerators such as GPUs and TPUs. GPUs and TPUs make the processing faster, cheaper, and more powerful. 

Despite the significant improvements resulting from using deep sequence-to-sequence models and their various mechanisms 
described in Section 3.1 in NLP tasks, RNN-based models are still limited to various weaknesses. For example, they cannot work in 
parallel due to their sequential design nature. Thus, they can’t leverage the full power of GPUs and TPUs. Moreover, they cannot 
efficiently handle long-range dependencies of long document inputs, resulting in low-quality summaries. Other problems include low- 
novelty, exposure-bias problem, loss/evaluation mismatch, and lack of generalization. 

Therefore, integrating RL and TL approaches can efficiently solve these problems, as discussed in Section 4 and Section 5, 
respectively. 

RL rewarding can help improve abstractive ATS results in its various aspects, such as ROUGE scores, quality, factual consistency, 
novelty, readability, coherency, syntax, non-redundancy, sentence ordering, conciseness, information diversity, information coverage, 
saliency, and entailment [87]. This is discussed in Section 4. 

Moreover, as discussed in Section 5, utilizing Transformers’ parallelization allows models to take advantage of the full power of 
GPUs and TPUs and increase training speed even with massive datasets. PTLMs pre-train the Transformers on huge corpora and 
transfer their acquired knowledge to downstream tasks such as abstractive ATS. As a result, the universal and rich semantic and 
contextual features of word embeddings acquired by PTLMs prove that they can assist in enhancing the quality of the resulting 
summaries. This widespread success of Transformers and PTLMs for various NLP tasks, including abstractive ATS, makes them the 
backbone of recent NLP research. 

2.6. Abstractive ATS models evolution history 

In the past years, many attempts have been made to generate acceptable and readable ATS. Luhn [88] has made the first attempt to 
generate an automated text summary in 1958, followed by several works. Some of them have led to acceptable and moderate out-
comes, and some have failed. However, all these works are far from human summaries quality levels. 

In early research work, non-neural models were applied with handcrafted features to generate ATS. These models include 
statistical-based approaches [89], topic-based approaches [90], graph-based approaches [91], and discourse-based approaches [92]. 

Next, the era of neural-based models emerged with machine-learning-based architectures, including supervised techniques [93,94] 
and unsupervised techniques [95]. 

Subsequently, the field of abstractive ATS flourished and became more appealing to researchers when the use of DL increased, 
especially deep sequence-to-sequence models, and demonstrated significant improvements in other similar areas of NLP such as MT 
and IC. These models use techniques and mechanisms that can solve several research problems and greatly improve the results. Ex-
amples include attention mechanism [28], pointer-generator mechanism [16], coverage mechanism [18], bidirectional architectures 
[70], and knowledge-enhanced mechanism [49], as discussed in detail in Section 3. 

Besides, RL approaches showed further improvement in results when combined with deep sequence-to-sequence models. Some of 
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these RL-based models address various common limitations that cannot be solved by DL-based models using policy-learning [96]. 
Others propose fused extractive-abstractive models which notably enhance the results, while others develop new abstractive ATS 
related rewards and metrics, as discussed in detail in Section 4. 

Finally, due to TL’s breakthrough in the NLP field, particularly the significant success and popularity of Transformer architecture 
[4] and the massive PTLMs [6,7,10–13], the quality of the results has improved dramatically and become closer to human-generated 
summaries with rapid computations. To this end, several pre-training objectives appropriate for abstractive ATS have been proposed. 
This is discussed in detail in Section 5. 

Fig. 2 summarizes the evolution of text summarization models over the past years. 

2.7. Short- vs long- document ATS 

Most of the early and current abstractive ATS research works focus on short-length abstractive ATS by applying experiments on 
datasets of news articles such as DUC, Gigaword, CNN.DM, and XSum. For example, as discussed in Section 6, the task of the Gigaword 
corpus is to produce a headline given the first sentence of a document. DUC has two main tasks, generating short and very short 
summaries. CNN/DM, the most popular dataset used to compare research progress in the field of abstractive ATS, is designed to 
generate short summaries (about 50 words) in light of a news article (approximately 700 words). Finally, XSum consists of an average 
of ~400 words inputs accompanied by one-sentence summaries of almost 20 words. Refer to Table 8 for more details. 

Recently, there has been increased interest in summarizing very long documents, which has led to the development of three popular 
long-document datasets for the abstractive ATS task: arXiv [97] , PubMed [97], and BIGPATENT [98]. Those consider scientific articles 
and patent descriptions consisting of thousands of words accompanied by summaries of hundreds of words. Refer to Table 9 for more 
details. 

Long summarization is more intricate as it requires more complex hardware requirements and more efficient approaches. 
Therefore, if the models developed for short-length summaries are applied to very long documents, it would certainly lead to trivial 
and incoherent summaries that involved many problems. 

[20,99,100] use RL approaches to generate more coherent summaries for long documents by dividing the document into several 
encoders or submodels, as discussed in Section 4.1. However, the complexity of such models will be increased dramatically when 
dealing with much longer documents as these models still handle the entire input document at once, precluding the possibility of 
parallelization [75]. 

In particular, as discussed in Section 2.4, LSTM [71] and GRU [67] were essentially proposed to handle long-term dependencies in 
long documents more efficiently. However, they still struggle with very long documents containing thousands of words such as sci-
entific papers due to the linear path length between the output and any of the input tokens. To this end, RUMs [74], CNNs [79], and 
Transformers [4] can be alternatives because they can better deal with long-term dependencies [75]. However, RUMs are limited to 

Fig. 2. The History of the Evolution of ATS Models.  
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parallel processing. 
CNNs and Transformers can work in parallel and be used to learn very long-range dependencies efficiently in very long documents 

due to their logarithmic or constant path length, making gradient flow much easier [65]. However, Transformer is preferable because 
its self-attention mechanism is able to model similarities between the words regardless of their positions in parallel, as discussed in 
Section 5.1. Consequently, [7,29,65,75] designed Transformer-based models to handle long documents achieving SotA results. These 
models are discussed in Section 5.2. 

Ultimately, this study explores the research progress of both short- and long-document abstractive ATS. SotA models for both 
genres are discussed in Section 7.2.1 and Section 7.2.2. 

3. Abstractive ATS using DL approaches 

Deep neural sequence-to-sequence models [68] using the encoder-decoder architecture, shown in Fig. 1, have proven to be the best 
choice to model TG tasks, such as abstractive ATS to shorten a long input text. However, utilizing this basic framework results in 
generating trivial summaries with several issues, such as difficulties in dealing with long-term sentence dependencies and Out of 
Vocabulary (OOV) words. Other issues include generating low-quality summaries that lose some essential details or include inaccurate 
factual details with repetitive phrases. Therefore, ATS researchers found some techniques and mechanisms to overcome these chal-
lenges and improve the quality of results, such as attention mechanism, copy mechanism, coverage mechanism, and 
knowledge-enhanced mechanism. 

3.1. Mechanisms 

The following subsections discuss some of the prominent deep sequence-to-sequence techniques and mechanisms that have been 
added to the basic encoder-decoder architecture and showed significant improvements in the abstractive ATS results. 

3.1.1. Attention 
The idea of attention is inspired by the human understanding of an object or text by focusing only on certain parts. For example, 

instead of paying attention to all parts when looking at an image, a person will concentrate only on specific details to better understand 
that image. Similarly, it is possible to allow a model to focus only on specific kinds of information that are considered most important in 
achieving a better understanding. 

In sequence-to-sequence modelling, encoding the entire source text into a fixed-length vector requires large memories and leads to 
the problem of long-term dependencies that negatively affects the performance of the model. Alternatively, the model can utilize the 
attention mechanism which dynamically searches for the most relevant parts by using a dynamically changing context in the decoding 
process [14]. Therefore, before generating a word, the attention mechanism is used to compute word weights to determine how much 
attention should be paid to each input word. This idea was first exploited by [66] to translate English statements into French by means 
of automatic alignment, followed by image caption generation by [101], short text conversation by [102], and then abstractive ATS by 
Rush et al., [28]. Moreover, to improve results by better handling name-entities and long sentences, Luong et al. [103] suggested global 
and local attentions for the MT task. The global attention pays attention to all the words of the source input, regardless of its length, 
while the local attention focuses only on a selective subset of input positions at each time step. 

For abstractive ATS, Rush et al. [28] utilize the basic attention mechanism of [66]’s probabilistic model by proposing a neural soft 

Fig. 3. Basic Sequence-to-Sequence model with attention [18].  
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attention model with a control layer. The model is concerned only with the words most likely to be added in the generated summary 
rather than looking at each word in the long input sequence. This mechanism saves more memory, improves performance, and 
achieves more efficient results. 

In formal terms, from [66]’s point of view, as shown in Fig. 3, the following formula calculates the weighted sum of the encoder 
hidden states, i.e., the context vector : 

cv =
∑

i
at

ihi (3)  

where at is the attention distribution over the source words, which is calculated using the softmax function as: 

at = softmax
(
vT tanh(Whhi + Wsst + batt)

)
(4)  

where v, Wh, Ws, and batt are the parameters to learn, and st is the decoder state in timestep t. 
Rush et al.’s model [28] consists of a convolutional attention-based encoder and a feed-forward decoder. Their experiments have 

achieved the best results at that time on two sentence-level and abstractive headline generation corpora, Gigaword and DUC-2004. 
Besides, multiple research efforts have conducted on abstractive ATS proposing several types of attention, such as attention over a 
hierarchical model [104], hierarchical attention [16], forced attention [105], graph-based attention [3], intra attention /self attention 
[99], and pointer-generator multi-head attention [106]. 

Recently, with the emergence of Transformers, many forms of attention have been proposed to enhance performance and reduce 
memory and computations. One of the commonly used forms of attention is the multi-head self-attention used by the standard 
Transformer [4], which uses multiple self-attention layers running in parallel to learn various attention distributions over the source 
sequence. Moreover, Sparse fixed and stride attentions are also proposed for better dealing with long sequences and reduce memory 
complexity. Furthermore, other types of attention are proposed and discussed in Section 5.1. 

3.1.2. Beam search 
During testing, sequence-to-sequence models generate fully-formed word sequences by searching over output sequences using 

either greedy search or beam search algorithms [107]. In most sequence-to-sequence models, after determining the probabilities of 
source salient tokens by the attention layer, the beam-search algorithm can be used during decoding to favour hypotheses, attend 
salient entities [108], shrink the search space, and reduce computational complexity [62]. 

More specifically, the greedy search algorithm tends to directly select the word with the greatest probability at each time step, 
which results in an incoherent sentence with inaccurate order of the words generated, i.e., low-readability [78]. On the other hand, the 
beam search algorithm ensures that coherent and more readable sentences are generated with the correct word order. The graph-based 
beam search algorithm considers (m) highest possibilities of the next word, which is called beam size and then selects the proposition 
that has the best probabilities combined. 

However, diversity and local optima search are the main limitations of the beam search algorithm. For the first problem, 
Vijayakumar et al., [109] proposed Diverse Beam Search (DBS) that yields diversified outputs by optimizing for a diversity-augmented 
objective. Multiple ATS research efforts have been performed using DBS to produce more informative summaries [110] and increase 
abstractive ATS novelty [111]. For the second problem, He et al., [62] suggested a prediction model (value network) based on RL 
approaches that can predict long-term rewards to be received in the future. 

3.1.3. Pointer-generator / copy 
In abstractive ATS attentional sequence-to-sequence models [16,28,104,112–115], the decoder may select inaccurate phrases from 

its vocabulary during the paraphrasing process. This may result in a summary containing incorrect information. Often, summaries 
must contain constant kinds of information from the original text, such as quotes and named-entity objects, to preserve the meaning of 
the sentence. 

Another problem with attentional sequence-to-sequence models is the inability to handle rare or unseen words, which results in 
generating the annoying unknown token (UNK) when locating such words, the problem which is called the OOV words problem. This 
problem occurs when the system encounters words during the testing phase that are not previously seen in the training phase, that is, 
out of its vocabulary. 

As a result, the summaries generated from the attentional sequence-to-sequence models may include some inaccurate words that 
may change the meaning of the sentence or produce the UNK token if the model doesn’t find any corresponding words in its vo-
cabulary. Therefore, the researchers worked to solve these problems by proposing the copy mechanism using pointing networks that 
allow the model to borrow some words from the source input text when needed, resulting in a combination of extractive and 
abstractive summary. 

Vinyals et al. paper [116] was the first to introduce this idea, proposing a pointer network over sequence-to-sequence learning in 
general, which can copy but not generate. Moreover, [117] proposed a copiable model for the MT task to solve the problem of OOV 
words. 

For abstractive ATS, Gu et al., [14] and Gulcehre et al., [15] were the first researchers that pointed the problem of OOV word on two 
different datasets, LCSTS (Chinese language) and Gigaword (English language), respectively. Then, Nallapati et al. [16] introduced a 
hierarchical attentional bidirectional model with a switching generator/pointer network to solve the OOV word problem for the 
abstractive headline generation task. The switching mechanism in the pointer generator model can balance the transcription of source 
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words and creativity. Subsequently, Zeng et al. [17] enhanced the copy mechanism using the read-again mechanism by reducing the 
vocabulary size to achieve more performance and produce a better OOV word representation using a softmax pointer mechanism. 

See et al. [18] enhanced previous work on the copy mechanism by proposing a hybrid pointer generator over the attention model 
that is capable of copying and generating words. Their model showed improved results over CNN/DM dataset and increased accuracies 
in the generated summaries. Specifically, Fig. 4 depicts how the proposed hybrid pointer generator is integrated with the 
attention-based sequence-to-sequence model shown in Fig. 3. 

Specifically, to calculate the generation probability, Pgen for timestep t: 

pgen = σ
(
wT

h∗ h∗
t + wT

s st + wT
x xt + bptr

)
(5)  

Where wh, ws, wx, and bptr are parameters to be learned, and pgenϵ[0,1]

P(w) = pgenPv(w) +
(
1 − pgen

)∑

i:wi=w
at

i (6) 

In this case, if w is not included in the source text, then 
∑

i:wi=w
at

i is zero, but if it is not included in the vocabulary, then Pv(w) equals to 

zero. Therefore, this demonstrates the ability of the model to efficiently overcome the OOV words problem. 
However, copy-mechanism-based models generate summaries that include many repeated sentences. For this problem, the 

coverage mechanism [18] has been proposed. Moreover, since the model is trained to copy specific words from the source text, this 
reduces the novelty levels of the generated abstractive summaries. This issue is efficiently solved using RL approaches discussed in 
Section 4. 

3.1.4. Coverage 
Attentional sequence-to-sequence models with copy mechanisms [14–18] have efficiently addressed OOV words and inaccurate 

details problems by taking advantage of combining extractive and abstractive objectives. However, these models failed to solve the 
repeated information problem. Therefore, it was imperative to develop a mechanism that keeps track the information that has already 
been generated in the summary. Therefore, the coverage mechanism has been developed. 

Tu et al. [118] and Mi et al. [119] revealed the idea of coverage mechanism by addressing two major problems of Bahdanau’s 
attention-based MT models [66], namely, over-translation, where some words are translated multiple times, and under-translation, 
where some words have never been translated. Tu et al. [118] appended a coverage vector to the attention model in intermediate 
representations to be updated after each attentive reading by a decoder to track attention history and help adjust future attentions. 

Afterward, See et al. [18] adapted Tu et al.’s model [118] to the ATS problem by adding a coverage vector, ct, to the 
attention-model to avoid repeated attention by allowing the model to pay more attention to not summarized pieces and less attention 
to the parts actually summarized. In fact, ATS coverage mechanism is more flexible and less restrictive than MT coverage which re-
quires a one-to-one translation ratio and a uniform coverage. Unlike previous work that focused on generating headlines based only on 
one or two sentences, the distinct challenge of this work is multi-sentence summarization, which means longer-text abstractive 
summarization using the CNN/DM dataset. 

Fig. 4. Sequence-to-Sequence model with attention and hybrid pointer generator [18].  
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Table 2 
A comparison of ATS DL-based sequence-to-sequence models. SGD stands for Stochastic Gradient Descent.  

Research Year Dataset Encoder Decoder Optimizer Beam 
size 

Main Contribution(s) Problem(s) Solved 

Rush et al.,  
[28] 

2015 Gigaword DUC CNN Feed-Forward NN SGD 50 Attention Mechanism Long-term Dependencies with Long sentences. 

Lopyrev [113] 2015 Gigaword DUC RNN RNN RMSProp _ Attention Mechanism with RNN 
for encoder and decoder 

Long Sequences. 

Chopra et al.,  
[114] 

2016 Gigaword DUC CNN RNN SGD 10 Attention mechanism (RNN 
Decoder) 

Long Sequences. 

Gulcehre et al., 
[15] 

2016 Gigaword Bidirectional 
GRU-RNN 

Uni-Directional 
RNN 

Adadelta  
[134] 

_ Copy mechanism Pointing method Rare/Unknown words (OOV problem). 

Gu et al., [14] 2016 LCSTS Bidirectional 
RNN 

RNN SGD 10 Copy mechanism (COPYNET) Rare/Unknown words (OOV problem). 

Nallapati et al., 
[16] 

2016 Gigaword DUC 
CNN/DM 

Bidirectional 
GRU-RNN 

Uni-Directional 
GRU-RNN 

Adadelta 5 Hierarchical attention 
Switching Generator/Pointer 
Temporal attention 
Large-Vocabulary Trick 
CNN/DM dataset 

Rare/Unknown words (OOV problem). 
Inaccurate factual details. 

Takase et al.,  
[115] 

2016 Gigaword DUC AMR-RNN AMR-RNN SGD _ Abstract Meaning Representation 
(AMR) 

The usefulness of incorporating structural syntactic and 
semantic information into novel attention-based encoder- 
decoder models. 

Miao and 
Blunsom  
[105] 

2016 Gigaword Variational 
Autoencoder 

Variational 
Autoencoder 

Adam 5 Forced-attention mechanism 
Variational autoencoders 
generative model 
Forced sentence compression 
Pointer network 
RL 

Training the discriminative models on a big labelled dataset. 

Zeng et al.,  
[17] 

2016 Gigaword DUC GRU LSTM LSTM SGD 10 Read again mechanism 
Copy mechanism 

Suboptimal representations of words. 
Large vocabulary. 
Slow decoding time. 

Chen et al.,  
[120] 

2016 CNN 
LCSTS 

GRU GRU SGD 
Adadelta 

5 Coverage mechanism (Distraction) 
for long text 

Low performance of long text summarization. 

See et al., [18] 2017 CNN/DM Bidirectional 
LSTM-RNN 

Uni-Directional 
LSTM-RNN 

Adagrad  
[135] 

4 Hybrid Pointer Generator 
Coverage Mechanism 

Inaccurate factual details. 
Repeated statements. 

Al-Sabahi et al., 
[70] 

2018 CNN/DM Bidirectional 
LSTM 

Bidirectional 
LSTM 

SGD 4 LSTM-based bidirectional encoder- 
decoder model 
Reverse the input sequence order 
in the encoder 
Bidirectional beam search 
algorithm 

Considering the token context only from the history side. 
Generating wrong information. 

Li et al. [63] 2018 CNN/DM Bidirectional 
LSTM 

LSTM Adagrad - Knowledge-enhanced mechanism 
Incorporate keywords  
Guide the generation process and 
control the summary’s content 

Hard to control generation 
Lack of key information 

Cao et al., [49] 2018 Gigaword Bidirectional 
GRU 

GRU Adam 6 Knowledge-enhanced mechanism 
Incorporate fact descriptions as 
triples and tuples relations 
Reduce generating fake 
information  
Improve summaries faithfulness 
and informativeness 

Generating summaries with fake facts  

Zhang et al.,  
[77] 

2019 Gigaword DUC 
CNN/DM 

CNN CNN Adadelta 5 Utilize CNNs to allow 
parallelization over text data 

Sequential nature of RNNs  

A
. A
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Specifically, the coverage vector, ct , can be shown as the sum of attention distributions over all previous decoder tokens: 

ct =
∑t− 1

taptarad ummyentityaptarad ummyx27;=0
ataptarad ummyentityaptarad ummyx27; (7) 

Here, the Bahdanau’s attention equation (Eq.3) is modified as follows: 

et
i = vT tanh

(
Whhi + Wsst +wcct

i + batt
)

(8) 

To penalize attendance to the same parts, a new coverage loss function is defined as follows: 

clt = − logP
(
w∗

t

)
+ λ

∑

i
min

(
at

i, ct
i

)
(9)  

Where λ is a hyperparameter. 
Later, Chen et al. [120] use the coverage mechanism by addressing higher-level abstraction by summarizing long text, i.e., 

thousands of words, at the document-level. In their work [120], the researchers have utilized the coverage mechanism from a different 
point of view: they used history to impose distraction, i.e., coverage, to avoid repetition, in order to gain a better understanding of the 
whole document by distracting the model to traverse between the document contents and to improve the model performance. They 
implement their model on CNN and LCSTS datasets. 

3.1.5. Knowledge enhanced / generation guide 
Deep sequence-to-sequence models along with its various techniques and mechanisms have significantly enhanced the summaries 

generated in terms of informativeness, readability, and quality. However, these models only rely on the input text representation to 
generate the results. This leads to many problems such as generating unfaithful summaries that lack basic information from the original 
text, generating semantically irrelevance summaries of the original text information, generating summaries with fake information, and 
difficulty in controlling the generation process and the summary length. 

The knowledge-enhanced mechanism (a.k.a generation guide mechanism), which was first proposed by He et al., [62] for MT, aims 
to introduce prior knowledge to the model by incorporating other useful information to be entered with the input sequence to guide the 
generation process and control the output to boost the performance of the results. Generally, the knowledge-enhanced mechanism 
encodes some forms of useful information, then the resulting representation is fed into the decoder along with source text embeddings 
and attention context vectors. 

Different kinds of guidance information can be extracted from the source text and entered into the model to increase the infor-
mativeness, readability, and faithfulness of its generated summaries. Examples of such information include keywords ([63,121,122]), 
length tokens ([122–125]), salient sentences [121,122,126]), facts descriptions and semantic dependencies represented by graphs and 
relations ([49,122,127,128]), and template-based reference summaries ([129]) 

Li et al. [63] utilize this mechanism for the abstractive ATS task by incorporating input text keywords as key information to guide 
the generation process to control the summary’s content to include the key information of the source text. In their work, an extractor 
model extracts the article keywords first, then the generation-guide mechanism is used in another model to predict the summary’s 
long-term value. This mechanism ensures that the source text keywords are included in the resulting summary. Moreover, Cao et al., 
[49] solve the problem of generating summaries with fake facts by extracting fact descriptions from the source text first, representing 
them by triples and tuples relations, and then encoding them into the model to control the output to be aware of these extracted 
descriptions during the generation process. Their results show a noticeable reduction in generating fake information by 80%, and an 
improvement in summaries faithfulness and informativeness. 

Recently, as shown in Section 5.2.4, this idea is further exploited by incorporating PTLMs and extra multi-guided information to 
enhance the accuracy and quality of the resulting summaries [121,122]. As a result, these models show impressive enhancements in 
ROUGE scores, as shown in detail in Section 5.2.4 and Section 7.2.1. 

As a branch of the knowledge-enhanced mechanism, the two-stage learning strategy [130,131] has recently attracted the research 
field of abstractive ATS. The candidate summaries generated by one model are used as input to another model to ultimately generate 
the best output. This model combination mechanism significantly boosts the performance of abstractive ATS models as recently shown 
by [132,133], discussed in Section 5.2.4. 

3.2. DL Research Contributions and Comparisons 

During the past six years, a vast amount of deep sequence-to-sequence research work has been conducted for abstractive ATS 
resulting in various models with different features and parameters. Table 2 compares some chosen research works that utilizes DL- 
based approaches in practical terms and summarizes their contributions. 

4. Abstractive ATS using RL approaches 

Research work on RL has grown in recent years. RL can achieve good performance in many areas, such as pattern recognition, 
speech recognition, computer vision, and NLP [136]. In RL, an agent interacts with the environment and learns, by trial and error, the 
optimal policy for sequential decision-making to maximize a future cumulative reward. This reward can be a developer-defined metric 
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based on the task being solved. For abstractive ATS, examples of such rewards may include maintaining saliency, directed logical 
entailment, and non-redundancy [87]. More specifically, most RL-based text summarization researchers use rewards to encourage the 
system to produce more qualified summaries, while others develop more suitable metrics to train their models [23,137]. 

Generally, based on the investigation, it is observed that researchers utilized RL in abstractive summarization in three different 
areas: i) To solve various problems that deep sequence-to-sequence models cannot solve, ii) to incorporate extractive features with 
abstractive summarization to take advantage of both types of ATS, and iii) to create novel evaluation metrics based on references other 
than ground-truth summaries. All this work has one optimal goal which is to enhance the quality of abstractive summarization. The 
following sections describe these three areas in detail. 

4.1. RL to solve deep sequence-to-sequence problems 

A flurry of sequence-to-sequence-based research has been directed to generate an acceptable summary that the reader can rely on, 
providing the information that stands out most in the article. Unfortunately, even the most significant work in the field has led to 
several shortcomings: as the source articles get longer, deep sequence-to-sequence models become incapable of dealing with long-term 
dependencies, and then generate low-quality and incoherent summaries. Another problem is that their generated summaries contain 
few novel words and phrases other than those included in the source article, i.e., low novelty levels. Moreover, inconsistency problems 
of the exposure-bias [138] and different training/testing evaluation metrics (loss/evaluation mismatch), lead to incoherent and 
low-quality summaries. As discussed in section 8.1, the last two problems resulted from deep sequence-to-sequence models because 
they have only one objective, which is to maximize the likelihood of predicting summaries. Finally, deep sequence-to-sequence models 
are unable to generalize to datasets other than those they are already trained on, which leads to the lack of generalization problem. 

RL systems have efficiently addressed most of these problems using policy-learning [96]. However, RL approaches must be 
combined with TL approaches to solve the lack of generalization problem. 

Specifically, the quality of abstractive ATS can be measured by its shortness, the importance and relevance of its information to the 
source document, and its validity in terms of semantic and syntax [23]. To improve the performance and quality of 
sequence-to-sequence-based summaries, researchers worked to optimize objectives other than the maximum-likelihood using RL 
approaches [19,99,100,139,140]. Moreover, Paulus et al., [99] combine the RL loss from a self-critical policy gradient with 
cross-entropy in order to optimize the non-differentiable ROUGE as a reward while maintaining the resulting summary readability. The 
results show improvements in terms of ROUGE scores, readability, and quality. Furthermore, Li et al., [139], propose a joining training 
process for an actor-critic framework to improve the training process using the policy gradient method. The maximum likelihood 
evaluator is combined with a neural network-based binary classifier to make the results and the human-written summaries 
indistinguishable. 

To solve the problems of exposure bias and loss/evaluation mismatch [138], Keneshloo et al., [140] suggested an RL framework 
with scheduled sampling to gradually remove the reliance of model training on the cross-entropy loss and increase the model’s de-
pendency on its own output. Furthermore, Keneshloo et al. [141] proposed to use either scheduled sampling [142] or Gibbs sampling 
[143]. Other RL-based attempts have been proposed to mitigate these gap problems [19,99,100,139,140]. In practice, however, 
RL-based approaches struggle to efficiently address these gap problems because RL-based training suffers from the noise gradient 
estimation problem [144] which makes its training suffer from instability and hyperparameter sensitive problems. [133] 

The ROUGE metric’s non-differentiability problem is solved by RL policy improvement [23] by optimizing its scores directly as 
rewards. 

To address the problem of generating incoherent summaries when dealing with larger text, i.e., generating low-quality summaries 
when encoding at document-level, Paulus et al., [99] use an intra-attention mechanism to avoid repetition. Moreover, Celikyilmaz 
et al., [100], first divide long text paragraphs between multiple communicating encoders and then produce the summary by a unified 
decoder that is conditioned on all encoders’ hidden states. As a result, this model, which is trained end-to-end using both maximum 
likelihood estimation and RL objectives, produces more efficient representations and significantly improves ROUGE results. 
Furthermore, Chen and Bansal [20] proposed a model consisting of an extractor to extract the most salient sentences, and an abstractor 
to rewrite these sentences from scratch using novel words, as described in Section 4.2. This model enhances the quality of the sum-
maries with faster training and decoding. Also, it can be used to summarize longer text with better performance. 

The problem of low levels of novelty has been considered after noticing the high copy rates in early work of deep sequence-to- 
sequence models. This problem is a very challenging task for sequence-to-sequence models [18]. Early sequence-to-sequence atten-
tion-based models [16,28,114] have produced abstractive summaries with very high copy rates even in short summaries with 92%, 
74%, and 75% copy rates, respectively, using Gigword dataset. Next, for longer text and summaries, and after the pioneering work of 
pointer-generator architectures emerged [16,18] with their ability to extract some words from the input text, the copy-rate of full 
sentences surpasses 30% [106]. This high-level of extractiveness in the abstractive summaries encourages researchers to work hardly 
to solve this substantial problem, which negatively affects the quality of the results. Many attempts have been made to alleviate this 
high word overlapping behaviour, including [20,23,106,111,145] who have efficiently addressed this problem using RL approaches 
using various techniques. Chen and Bansal [20] define novelty score as the ratio of novel words in the summary that do not appear in 
the input text. As mentioned previously, their mixed model, extractive and abstractive agents, increases the levels of novelty in the 
resulting summaries. Cibils et al., [111] presented a model based on DBS and a diversity factor in calculating neural network loss to 
improve the diversity of generated summaries, which in turn improves their novelty. Also, they introduced a new metric to calculate 
the percentage of copied text in the produced summary. Another significant work in this field has been done by [23] who have 
developed a novelty metric to encourage the model to generate novel words, which is described in Section 4.3. Furthermore, Boutkan 
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et al., [106] achieved comparative novelty results by using the multi-head attention mechanism [4], pointer dropout [146], and two 
new loss functions, to avoid overfitting and encourage more novelty while obtaining comparative ROUGE scores. Moreover, Chak-
raborty et al., [145] strengthen the pointer-generator network of [18] by adding an OOV penalty to improve the novelty of the 
generated summaries. However, the novelty score is inversely proportional to ROUGE scores. That is, as the novelty score increases, 
the ROUGE scores decrease [145]. Therefore, finding a compromising measurement is still an open research question. Table 3 com-
pares novelty scores for the previously discussed models applied on the non-anonymized version of the CNN/DM dataset. 

However, as presented in Table 3, there is still a huge gap between the novelty of human summaries and automated summaries, 
leaving plenty of room for exploration in the research space. 

In the same context, Song et al., [147] has recently done a significant work in this field by controlling the level of novelty of the 
resulting summaries by framing the task as language modeling using different mechanisms to generate summary hypotheses. Their 
experiments were performed only on Gigaword and Newsroom datasets, yielding SotA ROUGE results on the Gigaword corpus, as 
shown in Section 7.2.1. 

Finally, RL can be combined with TL approaches to solve the problem of lack of generalization. This problem occurs when a model 
that is trained on a large enough corpus fails to generate summaries of other smaller data. Keneshloo et al., [140] presented a solution 
to this problem using RL by fine-tuning a pre-trained model on one dataset and testing it on different datasets. Furthermore, Chen et al., 
[20] generalized their work to the DUC-2002 dataset using RL and performed well. Table 4 illustrates the problems of 
sequence-to-sequence models and their solutions proposed by RL-based research. 

Generally, although RL approaches enhanced the results and solved some problems of DL-based models, they are not sufficient to 
solve other challenges and obstacles that face abstractive ATS research. For example, efficiently handling long documents remains an 
obstacle, resulting in low-quality and low-novelty summaries. Compared to PTLMs, which are discussed in Section 5, deep sequence-to- 
sequence models are trained on relatively much smaller datasets, resulting in poor semantic and contextual features of word em-
beddings. Moreover, deep sequence-to-sequence models are unable to take advantage of parallelization due to their sequential nature 
obstacle, resulting in low training speeds. Solutions to the above problems are offered by TL approaches, Section 5. 

4.2. RL to combine extractive and abstractive summaries 

In the previous work of deep sequence-to-sequence models, as discussed in section 3.1.3, [14–18] were the first to incorporate 
extractive objectives with abstractive summarization. This was done by copying some words from the source document into the 
generated summary to solve OOV and inaccurate factual problems. Afterward, researchers use RL approaches to deal with these 
problems more efficiently and generate better summaries with respect to quality and performance by fusing extractive and abstractive 
models [19–23,64]. Inspired by human behaviour in summarizing documents, these models first extract the most salient sentences 
from the entry document, then abstract them, using two networks: extractor and abstractor networks. For each extracted sentence, it 
may be unmodified, paraphrased, or excluded in the last generated summary [148]. 

Liu et al., [19] suggest an adversarial framework that trains abstractive and extractive models at the same time using RL policy 
gradient to optimize the abstractive model for a highly-rewarded summary, resulting in a more coherent summary. Chen and Bansal 
[20] propose a fast summarization model that first extracts salient sentences and then rewrites them. Their model uses RL-based 
sentence-level policy gradient to bridge the non-differentiable computation between extractive and abstractive networks hierar-
chically while maintaining language fluency. Hsu et al., [21] introduce an inconsistency loss function to penalize the inconsistency 
between two levels of attention, sentence-level and word-level, to train their combined extractive-abstractive model. Gehrmann et al., 
[22] propose a two-step abstractive summarization model biased by an efficient and important content selector that works as 
bottom-up attention to determine which words in the source text should be included in the summary. Krys’cin’ski et al., [23] use a 
contextual network for extracting and compacting the source document and a language model for generating a concise paraphrase. 
However, like the pointer-generator mechanism, the problem of low levels of novelty still exists in these models. Moreover, there is a 
mismatch problem in these models between the training objective and the evaluation metric. The former uses the sentence-level 
ROUGE score as an RL reward for the sentence selection action, which doesn’t guarantee the optimal summary-level ROUGE scores 
that is used by the latter. For this, Bae et al., [149] proposed a novel training method using the summary-level ROUGE scores as an RL 
objective instead of sentence-level to globally improve sentence selection and directly increase ROUGE scores. 

In the same context, by integrating PTLMs with RL approaches, Bae et al., [149] and Wang et al., [64] have proposed models to 
enhance abstractive ATS outcomes and solve RL-based problems taking advantage of PTLMs’ universal representations and paralle-
lization. Both models are described in Section 5.2.4. 

Table 3 
Models’ n-gram novelty.  

Research Model Name 1-gram 2-gram 3-gram 4-gram 

See et al. [18] Pointer-gen + coverage 0.07 2.24 6.03 9.72 
Pasunuru and Bansal [87] Entail (RL) - 2.63 6.56 10.26 
Liu et al. [19] SumGAN 0.22 3.15 7.68 11.84 
Boutkan et al. [106] WPLoss-1atthead 1.44 8.86 17.96 25.50 
Chen and Bansal [20] rnn-ext+abs+RL+rerank 0.3 10.0 21.7 31.6 
Krys’cin’ski et al. [23] ML+RL ROUGE+Novel, with LM 3.25 17.21 30.46 39.47 
Reference Summary [23]  13.55 49.97 70.32 80.02  
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4.3. RL to create novel metrics and rewards 

Most RL-based sequence-to-sequence abstractive ATS models use ROUGE [5] for rewarding during training. However, ROUGE 
metric has three main limitations: its bias towards lexical similarity, its low consideration for fluency and readability of the generated 
abstractive summaries [150], and its hard prerequisite of using ground-truth summaries to produce the scores. Moreover, high ROUGE 
scores summaries usually obtain low human appealing [137]. Therefore, researchers developed new metrics to enhance novelty [23], 
factual consistency [151], and quality based on question-answering [108,150] and human ratings [137] using RL rewarding ap-
proaches without requiring ground-truth summaries. 

Novelty (a.k.a. abstractiveness) metrics identify the percentage of novelty in the resulting summary. Several researchers have 
designed their models to generate hybrid summaries containing both abstractive and extractive features. The goals are either to avoid 
infactual details/UNK words by copying named-entity and rare words [16,18], or to enhance the results by taking advantage of both 
extractive simplicity and informative and abstractive readability using RL [20]. As a result, these models suffered from high copy rates, 
and their generated summaries elicit a higher sense of being more extractive than abstractive. Therefore, measuring novelty and 
pushing the results towards a higher level of abstraction will help improve the quality of results even further. 

Recently, the authors of [23] proposed a novelty metric to encourage the generation of novel words as a reward. They defined their 
metric as the number of unique novel n-grams generated within the resulting summary, normalized by the length ratio of the generated 
and ground-truth summaries to avoid a bias towards generating short summaries, as follows: 

Novelty =
unique(SGEN, n) − − unique(XINPUT, n)

unique(SGEN, n)
∗
||SGEN||

||SREF||
(10)  

where SGEN is the generated summary, XINPUT is the input text, SREF is the reference summary, and n is n-grams. 
Factual consistency metric [151] has been developed to measure whether the generated summary contains only the information 

contained in the input document. In addition, the metric identifies the conflict between the input and output texts. 
To enhance the quality of summaries, researchers work with two strategies, question-answering and human rating. Question- 

answering-based quality metrics were developed by [108] and [150]. APES [108] measures the summary quality by its ability to 
answer a set of questions about the essential entities in the article. Scialom et al., [150] proposed QA-based unsupervised metrics for 
reinforced summarization models that don’t require reference summaries without using ROUGE as a reward. 

On the other hand, a human-rating-based quality metric is developed by [137] to get rid of relying on reference summaries required 
by ROUGE metric, which had not been approved by experts evaluation. This metric has learned a new reward function based on 2,500 
human ratings. Examples of other potential rewards include maintaining saliency, directed logical entailment, and non-redundancy 
[87]. 

5. Abstractive ATS using TL approaches 

The idea of TL is inspired by the ability of humans to transfer their knowledge gained from one task to solve other related tasks that 
they have not faced before. In the machine learning field, the knowledge learned from one domain/task can be transferred to another 
related domain/task [152]. 

NLP research fields, including abstractive ATS, have flourished following the developments of Transformers [4] and various PTLMs 
[6,7,10–13], described in the following sections. Specifically, PTLMs are trained on abundant unlabelled data benefitting from the 
parallelization ability of the Transformer as their fundamental architecture to speed up the training process. This results in learning 
universal language representations that can be utilized by, i.e., transferred to, various downstream tasks, including abstractive ATS, to 
increase the quality of their results and the speed of training. 

5.1. Transformer 

The Transformer architecture [4] is the backbone of the latest PTLMs, including BERT [6], BART [10], PEGASUS [7] and many 
others. This architecture relies entirely on attention mechanisms rather than recurrences to draw global dependencies between inputs 
and outputs. Therefore, it overcomes the problems of RNN, LSTM, and GRU of long-term dependencies and sequential nature, using a 
self-attention mechanism to model similarities between words regardless of their positions in parallel. Specifically, The Transformer 
consists of six encoders in a hierarchical structure and the same number and structure of decoders. Each encoder includes a multi-head 

Table 4 
Examples of deep sequence-to-sequence problems that are solved by RL approaches  

Problem RL Solution proposed by 

Low quality summaries for long documents [20,99,100] 
Low Novelty [20,23,106,111,145] 
Exposure-bias [19,99,100,139,140] 
Loss/Evaluation mismatch [99,100,140] 
ROUGE metric’s non-differentiability [23,99] 
Lack of Generalization [20,140]  
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self-attention layer and a fully connected feed-forward neural network layer. On the other hand, decoders have an additional layer 
between these two layers: the encoder-decoder attention layer, to focus on essential words in the input sequence. To calculate 
attention, three matrices are used, the query, key, and value matrices, each of which consists of n vectors for a document containing n 
tokens, which leads to quadratic memory complexity. 

This architecture outperforms sequence-to-sequence models which were designed either by RNNs or CNNs architectures and 
showed SotA results in various NLP tasks with less training time. Fig. 5 depicts the internal structure of the Transformer as described in 
[4]. 

However, the main limitations of the self-attention mechanism used by the standard Transformer can be summed up as the 
quadratic memory and computational complexities, the large number of operations required when dealing with long sequences, and 
the fixed-length context prerequisite to learn long-term dependencies. 

To improve Transformer efficiency and solve its problems, various attempts have been suggested such as locality-sensitive hashing 
based attention, Reformer [153], which reduces memory complexity and speeds up training with a O(n log n) complexity. Also, 
performing sparsity, Sparse Transformer [154], can train deeper networks with fewer operations with a O(n √n) complexity, saving O 
(√n) over the self-attention mechanism. Moreover, using autoregressive-based architectures, Transformer-XL [155], enables models 
to understand the context and learn dependency beyond a fixed length limitation. 

In particular, for abstractive ATS, BigBird [29] has been essentially proposed to improve handling long documents using the sparse 
attention mechanism which reduces dependency to linear, i.e., O(n). BigBird is applied on the abstractive ATS task to summarize long 
documents and achieved SotA results as discussed in Section 5.2.4 and shown in Section 7.2.2. In addition, HEPOS (Head-wise Po-
sitional Strides) encoder-decoder attention [156] was recently proposed to effectively identify the salient content and capture the 
global context of a long input text with lower complexities and costs. Compared with self-attention encoders, HEPOS-based models can 
handle double the words and generate more informative and faithful summaries with higher ROUGE scores, as shown in Section 7.2.2. 

However, more details of the various efficient Transformers and self-attentions are presented in [157] and [156], as it is beyond the 
scope of this article. 

5.2. Pre-trained language models PTLMs 

The breakthrough of pre-trained language models revolutionized the field of NLP research. With their powerful capabilities and 
resources, large organizations and educational institutes design and train mega models with a tremendous number of parameters on 
large-scale general-purpose datasets (160GB or more). Training PTLMs results in learning universal language representations that can 
then be reused by downstream tasks, even with small amounts of datasets. This provides downstream tasks with a strong initialization, 
avoiding training them from scratch, resulting in significant improvements in training speed and quality of their results. 

Basically, PTLMs are differentiated based on their architectures and pre-training tasks. Knowing these details is crucial to decide 
whether a particular PTLM is suitable for a specific task. For example, BERT is better suited to understanding tasks than generating 
tasks. Hence, PTLMs must be chosen wisely based on these details when adapting them to downstream tasks. 

Most pre-training tasks are designed for generation tasks, understanding tasks, or specific tasks. The most commonly used pre- 
training tasks include language modelling (such as ELMO, GPT, UniLM), masked language modelling, i.e., cloze task [158] (such as 
BERT, MASS), denoising autoencoder (such as BART) , permuted language modelling (such as XLNet), and others designed for 
specific-tasks such as gap sentence generation [7] and future n-gram prediction for abstractive ATS [159]. 

For PTLM architectures, ELMo uses LSTM while the rest of PTLMs use Transformers as their backbone architecture. Some of them 
pre-train the encoder only, such as BERT, others pre-train the decoder only, such as GPT, while others pre-train both the encoder and 
the decoder together using the encoder and decoder parts of Transformer, such as Ernie-Gen, BART, and T5. In general, for TG tasks, 
the framework usually consists of a bidirectional encoder and a unidirectional decoder [160]. 

There are two main strategies for downstream tasks to apply pre-trained language representations: feature-based and fine-tuning 
[6]. In the feature-based strategy, the fixed features are extracted from the pre-trained model, the task-specific architecture is required, 
and the pre-trained representations are used as additional features. On the other hand, in the fine-tuning approach, a simple classi-
fication layer is often added to the pre-trained model. The downstream task is trained by jointly fine-tuning all pre-trained parameters 
and introducing minimal task-specific parameters. Recently, fine-tuning has become the traditional adaptation strategy of most 
PTLMs. However, fine-tuned parameters are not the same for different downstream tasks. In modern PTLMs, the output vectors of their 
neural encoders represent the word semantics depending on its context. These vectors are called contextual word embeddings [161]. 

For abstractive ATS, several PTLMs are fine-tuned to enhance the quality of the generated summaries, such as BART [10], T5 [8], 
MASS [162], UniLM [163], and Switch [9] as described in Section 5.2.2. Moreover, as shown in Section 5.2.3, other PTLMs are 
pre-trained in tasks specifically designed for the abstractive ATS task, such as the gap sentence generation task used in PEGASUS [7], 
and the future n-gram prediction task used in ProphetNet [159]. Furthermore, researchers boost the performance of the abstractive 
ATS task by combining multiple PTLMs for encoders and decoders using various methods. Other researchers provide general and 
extensible frameworks for abstractive ATS such as BERTSUMABS, BERTSUMEXTABS [164], GSum [122], Refactor [132], and SimCLS 
[133]. All this work is described in Section 5.2.3 and Section 5.2.4 

Currently, one popular research direction is to modify and/or adapt Transformers and PTLMs to different understanding and 
generation tasks, as shown in Section 5.2.4. Hence, first, the details of some chosen PTLMs are discussed, and then the different ways of 
adapting these PTLMs to different tasks are described, with an emphasis on the abstractive ATS task. 
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5.2.1. Popular PTLMs for comprehension and generation tasks 
ELMo [165] is a deep contextualized word representation that models complex word usage characteristics and how these uses 

differ across linguistic contexts. Specifically, this PTLM consists of a two-LSTM-layers encoder and is pre-trained with a Bidirectional 
language model (BiLM) task using forward and backward language models. ELMo generates contextual representations to downstream 
tasks by shallowly concatenating the extracted context-sensitive features of each token from both sides, i.e., left-to-right and 
right-to-left, from two independently trained unidirectional LSTMs shown in Fig. 6. However, ELMo cannot be pre-trained to learn 
interactions between these features. Moreover, ELMo can be applied to downstream tasks using only the feature-based strategy, where 
its actual parameters are not adjusted, i.e., fixed. 

The Bidirectional Encoder Representations from Transformers (BERT [6]), shown in Fig. 7, is a Transformer-based, large-scale, 
self-supervised, encoder-only, bidirectional multi-layer PTLM. BERT is trained for language understanding tasks using the masked 
language modelling (the cloze task) and next-sentence prediction objectives. As a result, an efficient embedding that utilizes the se-
mantic text features is generated by combining representations of words and sentences into a single very large Transformer [164]. Also, 
BERT can efficiently identify relevant sentences by pre-training the model in a binary classification task to predict which sentences will 
follow one another. 

Compared to ELMo, BERT is Transformer-based while ELMo is LSTM-base architecture. Unlike ELMo, BERT can pre-train the 
interactions between left and right context tokens features. Also, BERT is effective for both fine-tuning and feature-based strategies. 
However, BERT has limitations in masked position dependencies disregarding and pre-train finetune discrepancy. these problems are 
solved by other recent PTLMs such as XLNet [166] and Ernie-Gen [160] models. Moreover, because predictions in BERT are not made 
auto-regressively, BERT is better suited to Natural Language Understanding (NLU) tasks than TG tasks. 

Open AI released three generations of their model, GPT, GPT-2, and GPT-3. GPT (Generative Pre-Training) [11] is a task-agnostic, 
decoder-only, left-to-right Transformer-based model that predicts sequence words one by one and learns general language repre-
sentations, which can then be transferred to multiple downstream tasks with a little adaptation. The GPT architecture is shown in 
Fig. 8. The GPT model is pre-trained on NLP generative tasks on various unlabelled datasets, to improve language understanding. 

Compared to BERT, both are Transformer-based architectures, but GPT uses only the decoder part of the Transformer, while BERT 
uses the encoder part. Moreover, GPT uses a left-to-right Transformer that can only model the context from the left side, whereas BERT 
uses a bidirectional Transformer to model the context based on both sides. 

Next, GPT-2 [12] extends GPT with some modifications to learn various NLU and TG tasks in zero-shot transfer without any 
finetuning to a specific task dataset. However, repetition, logic conflicts, and lack of long-range coherence are the main shortcomings 
of GPT-2 in generating tasks [167]. 

The autoregressive-based GPT-3 [13] is then proposed, including 175B parameters. This model is evaluated with various settings 
including zero-shot, one-shot, and few-shot learnings without weight updating, and with and without language prompting, achieving 
competitive results with other fine-tuning approaches. However, GPT-3 still suffers from several weaknesses. For example, it still 

Fig. 5. The Transformer architecture.  
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struggles with several inference and reading comprehension tasks. Also, it has structural and algorithmic limitations. Poor pre-training 
sample efficiency is another limitation. Other shortcomings include the possibility of generating text with trivial errors, high cost 
inferencing, and the uncertainty about whether the model learns new tasks based on pre-trained learning or from scratch. 

Fig. 6. ELMo [6].  

Fig. 7. BERT [6].  

Fig. 8. GPT [6].  
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5.2.2. PTLMs fine-tuned to Abstractive ATS 
The Unified Language Model, UniLM [163], is designed with a shared multi-layer Transformer network and parameters to be 

jointly pre-trained on a big dataset using three different types of unsupervised language modelling objectives: unidirectional, bidi-
rectional, and sequence-to-sequence. Its task is to predict a masked word based on its context, i.e., cloze task. This multi-objective 
pre-training allows UniLM to be fine-tuned not only for NLU tasks, like BERT, but also for TG tasks such as MT and ATS. 

MAsked Sequence to Sequence, MASS [162], is a Transformer-based sequence-to-sequence pre-trained model designed for 
encoder-decoder based language generation tasks such as MT and ATS. Inspired by BERT [6], using randomly masked fragments 
passed into the encoder, the decoder predicts the missing part. MASS is fine-tuned to three tasks: MT, ATS, and conversational response 
generation. It improved the results significantly especially in the MT task. 

Experimentally, both UniLM and MASS models performed well in abstractive ATS achieving reasonable ROUGE scores. 
BART [10], is a denoising auto-encoder PTLM which is particularly effective when fine-tuned to TG tasks and works well for 

comprehension tasks. Specifically, BART is pretrained to convert a corrupted text to its original script by optimizing the cross-entropy 
reconstruction loss between the decoder output and the original text. This is done by corrupting a text with an arbitrary noising 
function, masking out a random subset of words, and then learning how to reconstruct the original text. Bart, which is described in 
Fig. 9, is a generalized version of BERT (i.e., bidirectional encoder and masked language modelling), GPT [11] (i.e., left-to-right 
decoder), XLNet [166] (i.e., Permute language model), UniLM [163] (i.e., multitask masked language model), and MASS [162] (i. 
e., masked sequence to sequence). As a result, BART performs well on multiple discriminative tasks like GLUE [168] and SQuAD [169], 
and generation tasks like abstractive dialogue, question-answering, translation, and ATS. As for the latter, it gains comparative scores 
on the XSum and CNN/DM datasets, as shown in Section 7.2.1. 

Compared to UniLM, both can be used for both discriminative and generative tasks, but UniLM predictions are conditionally in-
dependent, while in BART they are autoregressive [10]. Compared to MASS, both are very similar, but BART is more effective on 
discriminative tasks. 

The second version of UniLM, UniLMv2 [170], is proposed for two complementary modeling tasks: autoencoding and partially 
autoregressive, to jointly learn bidirectional and sequence-to-sequence language modeling, respectively. Moreover, a pseudo-masked 
language model training procedure is introduced, making the computations more efficient. Based on conventional masks, 
inter-relations between corrupted tokens are learned via autoencoding, which provides global masking information to partially 
autoregressive modeling. This makes position embeddings accessible to partially autoregressive modeling, making it able to learn 
intra-relations between masked spans. For abstractive ATS, as shown in Section 7.2.1, UniLMv2 boosted the performance of UniLM on 
both CNN/DM and XSum corpora. 

The Text-To-Text Transfer Transformer model (T5) [8] is a unified framework that treats with every language problem as a 
text-to-text problem with the flexibility in applying the same model settings, including its objective, training, and decoding processes 
directly to various NLP tasks. 

Compared to BERT, T5 utilizes the standard encoder-decoder architecture for both classification and generative tasks with the same 
BERT’s objective of masked language modelling to achieve better results. Instead, BERT is developed to produce a single prediction for 
each input token or sequence, which is more suitable for classification tasks or span prediction tasks than generative tasks. As a result, 
T5 can be successfully applied to a number of NLP tasks including generative, classification, and regression tasks. For abstractive ATS, 
T5 achieves comparative results on the CNN/DM dataset, as shown in Section 7.2.1. Fig. 10 depicts the T5 model showing some of its 
capabilities. 

Ernie-Gen [160] is an enhanced multi-flow sequence-to-sequence pre-training and fine-tuning framework proposed for TG tasks 
focusing on addressing the exposure-bias problem more efficiently when fine-tuning PTLMs to downstream tasks. To this end, both the 
infilling generation mechanism and the noise-aware generation method have been incorporated to bridge the discrepancy between 
training and inference. Moreover, instead of word-to-word prediction, Ernie-Gen is trained using a span-by-span generation task to 
produce human-like summaries. As a result, Ernie-Gen achieve comparable results on abstractive ATS, as shown in section 7.2.1. 

Recently, Fedus et al., [9] from Google Brain, introduced two large Switch Transformer models, Switch-XXL, and Switch-C with 
395B and 1.6T parameters, respectively. Different from the standard Transformer encoder, the dense feed forward network layer is 
replaced by a sparse switch feed forward network layer. Although the proposed models are much larger than the previous ones, they 
successfully solved Transformers and other PTLMs problems by reducing computation and communication costs, increasing 

Fig. 9. BART [10].  
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Fig. 10. T5 Model.  
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pre-training speed, and mitigating training instability. The researchers fine-tuned their proposed model to the abstractive ATS task, 
resulting in a ROUGE-2 score of 19.6 on the CNN/DM dataset, and 22.3 on the XSum corpus using Switch-Base and Switch-Large 
model, respectively. 

5.2.3. Abstractive ATS PTLMs 
Pegasus [7] is a Transformer-based encoder-decoder sequence-to-sequence model that is pre-trained on huge unsupervised text 

corpora with a new self-supervised objective, gap sentences generation, which is essentially designed for the abstractive ATS task. This 
model’s main idea is to remove/mask important sentences from the input document to be generated as one output sequence from the 
remaining sentences. The advantage of Pegasus is that it masks multiple completed sentences instead of smaller continuous text spans. 
In addition, it chooses the sentences based on their importance, not randomly like other models. Moreover, Pegasus can work at the 
subword level instead of word level as an effective alternative strategy to the copy mechanism. Specifically, Pegasus applies two 
learning objectives at the same time, the masked language model and the gap sentence generation. For example, as shown in Fig. 11, 
out of the three sentences, one of them is masked with [MASK1] and used as the target generation text (i.e., gap sentences generation). 
Whereas the other two sentences are kept in the input with some tokens that are randomly masked using [MASK2] (i.e., masked 
language model). As a result, Pegasus was evaluated on 12 different abstractive ATS corpora from different domains. It achieves 
comparative results on both short-document and long-document datasets, as shown in Section 7.2.1 and Section 7.2.2, respectively. 

ProphetNet [159], which is based on Transformer encoder-decoder architecture, introduces a novel self-supervised learning 
objective by predicting multiple future tokens based on previous context tokens. The future n-gram prediction objective utilizes useful 
information to guide the model to predict multiple future tokens simultaneously while preventing overfitting on local correlations. In 
addition, ProphetNet modifies the internal structure of Transformer [4] using the n-stream self-attention mechanism and the mask 
based autoencoder denoising task for sequence-to-sequence pre-training. ProphetNet was evaluated on CNN/DM and Gigaword 
datasets resulting in significant enhancements in ROUGE results compared to other premium PTLMs including T5, BART, and 
PEGASUS, as shown in section 7.2.1. 

BERTSUM [164] adjusts BERT for both extractive and abstractive types of ATS. BERTSUM uses the pre-trained BERT-based 
encoder at document-level to efficiently represent sentences semantically. Also, a randomly initialized Transformer decoder is utilized 
to solve the problem of large text input. Furthermore, as discussed in Section 4.2 of combining extractive and abstractive objectives, a 
dual-objective encoder is used to optimize document-level summarization performance with minimum requirements without using the 
copy mechanism or RL approaches. Specifically, for each input token, BERT manipulates three kinds of embeddings: token, segment, 
and position embeddings. These embeddings are summed into a single input vector which is fed to the bidirectional Transformer layers 
to generate contextual vectors representing that token. As mentioned earlier, BERT is not suitable for fine-tuning as an encoder for TG 
tasks including the ATS task. To this end, BERTSUM extends BERT by modifying the three essential types of embeddings used in BERT 
to be suitable for the summarization task, as described in Table 5. 

As a result, two general frameworks for abstractive ATS, BERTSUMABS, and BERTSUMEXTABS, have been proposed. The former 
uses the pretrained BERTSUM encoder, and an untrained 6-layered Transformer decoder initialized randomly, using two separated 
optimizers to overcome the problem of fine-tuning instability. The latter is fine-tuned twice on the extractive ATS task first, then on the 
abstractive ATS task. 

STEP [171] is pre-trained to reinstate the original text from an artificially constructed input using three pre-training objectives 
related to abstractive ATS: sentence reordering, next sentence generation, and masked document generation. The distinct contribution 
of this work is that it achieves comparable results through training on much less data (19GB) compared to other related PTLMs such as 
Pegasus and ProphetNet. 

For extractive ATS, MatchSum [172] is proposed based on BERTSUM [164] as a matching-based summarization framework that 
matches the input document and the proposed summaries in the semantic space. In addition, HIerachical BERT (HIBERT) [173] and 
DISCOBERT [174] are proposed for document encoding. These models are pre-trained to predict sentences (HIBERT) and 
sub-sentential discourse units (DISCOBERT) instead of words, at document-level to solve BERT’s problems of redundancy, lack of 

Fig. 11. Pegasus [7].  
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information, and long-range dependencies. Furthermore, Zhong et al., [175] show how extractive ATS models can make use of 
different architectures, transferable knowledge, and learning schemas to enhance their results. To the best of our knowledge, for 
extractive ATS models, MatchSum [172] achieves the SotA Rouge-1/Rouge-2/Rouge-L scores with 44.41/20.86/40.55, respectively. 

Table 6 compares chosen PTLMs relevant to the abstractive ATS task. 

5.2.4. Utilizing PTLMs to abstractive ATS 
Modern models compete to leverage the advantages of Transformers and PTLMs to several understanding and generative tasks, 

including the abstractive ATS task. These PTLM-based models exploit the rich semantic and contextual features of global language 
representations to improve the quality and accuracy of the resulting summaries in informative, readability, and faithfulness terms. 
Recently, adapting the Transformer and PTLMs and/or altering their internal structures for specific tasks, including ATS, has become a 
research trend due to the observed improvements in results. This section discusses some of recent chosen work in this context. For 
example, for language understanding tasks, Lei et al., [82] combine a simple recurrent unit with the Transformer, while Huang et al., 
[83] combine the Transformer with Bidirectional LSTM. Both Lei et al., [82] and Huang et al., [83] outperformed the basic Trans-
former and BERT models in terms of speed and accuracy, respectively, on various NLP comprehension tasks. Furthermore, Wang et al., 
[84] modify the Transformer architecture by adding an LSTM before or after all Transformer blocks to capture sequential concepts 
more efficiently for various NLP tasks. Also, they add a masked self-attention instead of self-attention heads to avoid leftward in-
formation flow. Moreover, they add a linear output layer during fine-tuning GPT [11], GPT-2 [12] and BERT [6] models. As a result, 
their modified architecture achieves better results and captures stronger word-level context for language models. 

Table 5 
Original BERT vs BERTSUM.  

Embedding Function Summarization requirements BERT BERTSUM 

Token 
embeddings 

To identify the token 
meaning 

Requires sentence-level 
representations 

Word-level embedding Sentence-level embedding by adding [CLS] 
tokens at the beginning of each sentence. 

Segment 
embeddings 

To distinguish 
sentences 

Requires multi-sentence encoding 
and manipulating 

Represents only 
sentence-pair inputs 

Uses interval segment embeddings to 
discriminate multiple sentences. 

Position 
embeddings 

To indicate the token 
position 

Requires flexibility Maximum length of 512 More than 512 with random initialization.  

Table 6 
A comparison of abstractive ATS-related PTLMs.  

PTLM Year Transformer part 
used 

Pre-training Task Parameters Pre-training corpus (size) 

ELMo [165] 2018 “LSTM Encoder” Bidirectional Language modeling 94M One-Billion-Word [176] (30M sentences) 
GPT [11] 2018 Decoder Language modeling 110M/117M BookCorpus (16GB) [177] 
BERT [6] 2019 Encoder Masked language modeling + Next sentence 

prediction 
110M/340M English Wikipedia (16GB) + BooksCorpus  

[177] (3.3G words) 
T5 [8] 2019 Encoder-Decoder Masked sequence-to-sequence language 

modeling 
60M/220M/ 
``770M/2.8B/ 
11B 

C4 (750GB) [8] 

MASS [162] 2019 Encoder-Decoder Masked sequence-to-sequence language 
modeling 

- WMT monolingual corpus* (190M/62M/ 
270M sentences) 

UniLM [163] 2019 Encoder Multi-task sequence-to-sequence masked 
language modeling + Next sentence 
prediction 

340M English Wikipedia + BookCorpus (16GB)  
[177] 

BART [10] 2019 Encoder-Decoder Denoising auto-encoder 406M BookCorpus [177] + English Wikipedia +
CC-News [178]+ OpenWebText** +
STORIES [179] (160GB) 

PEGASUS [7] 2020 Encoder-Decoder Gap sentence generation + Masked language 
modeling 

568M C4 (750GB) [8] / HugeNews (1.5B 
articles) (3.8TB) 

ProphetNet  
[159] 

2020 Encoder-Decoder Future n-gram prediction - BookCorpus [177] + English Wikipedia +
CC-News [178]+ OpenWebText** +
STORIES [179](160GB) 

STEP [171] 2020 Encoder-Decoder sentence reordering + next sentence 
generation + masked document generation 

585M GIGA-CM (6.5M documents) (19GB) 

Ernie-Gen  
[160] 

2020 Encoder-Decoder Span-by-span generation 110M/ 340M English Wikipedia + BookCorpus 
(16GB&430GB) [177] 

UNILMv2  
[170] 

2020 Encoder-Decoder Sequence-to-sequence masked language 
modeling + Bidirectional language 
modeling + Pseudo-masked language model 

110M BookCorpus [177] + English Wikipedia +
CC-News [178]+ OpenWebText ** +
STORIES [179] (160GB) 

Switch-C [9] 2021 “Switch 
Transformer 
Encoder” 

Masked language modeling 7.4B/26.3B/ 
395B/1.6T 

Improved C4 (180B tokens) 

*http://www.statmt.org/wmt16/translation-task.html 
**https://skylion007.github.io/OpenWebTextCorpus/ 
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Moreover, for multi-document ATS, Kieuvongngam et al., [43] fine-tune the GPT-2 model via text-to-text, multi-loss training 
strategy to summarize COVID-19 research articles. Also, they fin-tune BERT for their extractive ATS model. 

For long-document abstractive ATS, the BigBird-PEGASUS model [29] uses a sparse attention encoder, which is described in 
Section 5.1. This model beats the Transformer-based Pegasus in summarizing long documents, as shown in Section 7.2.2. Moreover, 
Gidiotis and Tsoumakas [75] use the divide-and-conquer approach by dividing the long input document and its summary into smaller 
parts and then allowing the model to learn to summarize each part of the document in isolation. Then these partial summaries are 
merged to form the final long summary. The researchers of [75] have demonstrated that this approach enhances summarization 
performance and reduces computational complexity when used with different summarization models based on LSTM, RUM, and 
Transformer. 

This field of research has recently been enriched with more attempts. Xiao and Carenini [180] study repetition reduction in long 
documents achieving comparative results. Also, Pilault et al., [65] utilize the mixed extractive-abstractive approach using a single 
PTLM, GPT-2 [12], to generate the final abstractive summary. ROUGE results of these models are presented in Section 7.2.2. More 
recently, Huang et al. [156], discussed in Section 5.1, add HEPOS to the Locality-Sensitive Hashing (LSH) attention encoder. Their 
model, LSH+HEPOS, achieves SotA results on arXiv and PubMed datasets outperforming the sparse-attention encoder 
BigBird-PEGASUS, the Transformer-based PEGASUS, and the divide-and-conquer based Dancer-PEGASUS models, as shown in Section 
7.2.2. 

For short-document abstractive ATS, many ideas have been proposed to promote the performance by adapting and combining 
Transformers and PTLMs in different ways. 

By integrating extractive and abstractive summaries to enhance the quality of the results, Bae et al., [149], Wang et al. [64], and Liu 
and Lapata [164] suggested their models. Bae et al., [149] leverage BERT representations in the extractive network only, using [20]’s 
RL-based abstractor. Wang et al. [64] exploit BERT word embeddings in two sub-models, extractor and abstractor, train them together 
and then bridge their results using RL approaches. The extractive sub-model extracts the most salient statements from a document, 
then the abstractive sub-model rewrites these key sentences in a readable and concise form. The proposed model yielded comparative 
results on the CNN/DM dataset, as shown in Section 7.2.1, which demonstrates the relevance of their idea. Fig. 12 demonstrates their 
proposed model. 

Additionally, other ideas and techniques have been proposed to leverage Transformers and PTLMs, such as dual-encoding [85], 
dual-decoding [181], decoder-only network [182] , various training strategies [183], and feature-based adaptation [184]. 

Recently, by utilizing the knowledge-enhanced mechanism described in Section 3.1.5, [121,122,127,128] use an additional 
encoder to incorporate extra useful external information into their models to optimize the accuracy, faithfulness, fluency, and quality 
of the abstractive ATS outcomes. As a result, these models have shown significant improvements in performance and ROUGE scores, as 
shown in Section 7.2.1. SemSUM [128] incorporates semantic dependency graphs to guide the generation process to produce a 
summary that is more semantically relevant to the contents of the input text. Zhu et al., [127] incorporate factual relations via 
knowledge graphs to enhance the factual consistency of abstractive ATS. Furthermore, Saito et al., [121] incorporate saliency by 
investigating nine combinations of PTLMs and saliency models, then propose a new combination model. This proposed model, CIT, 
incorporates salient tokens as extra inputs to their model, which guides the summary generation and ensures covering all key in-
formation. Experiments of applying these combinations to the abstractive ATS task show significant performance enhancements, as 
shown in Section 7.2.1. Moreover, Dou et al., [122] use various kinds of external knowledge as an input to guide and control the output 

Fig. 12. Extractive-abstractive combination with BERT and RL [64].  
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and increase faithfulness. As a result, they build a general framework, GSum, by adopting a Transformer instantiated with BERT or 
BART for the encoder and decoder components. Their model uses two encoders to encode the input document and the guidance signal, 
which are both attended to by a decoder when generating outputs. To predict guidance signals, Oracle extractions are used at the 
training time, and MatchSum model [172] is used at the test time. 

More recently, utilizing the two-stage learning strategy, discussed in Section 3.1.5, in abstractive ATS has pushed the SotA per-
formance to a higher level by combining the outputs of multiple SotA models. This ensemble approach is utilized by [132,133] 
demonstrating that abstractive ATS models can generate better summaries than their original outputs. [132] solve different gap 
problems of stacking and reranking methods by introducing a two-stage learning general framework, Refactor, where the combined 
models share the same parameters. Specifically, Refactor is first trained to identify candidate summaries from document sentences 
(pre-trained Refactor), and then trained to identify candidate summaries from different base model outputs (fine-tuned Refactor). As a 
result, Refactor utilizes the complementarity of top-performing abstractive ATS models (such as BART, PEGASUS, and GSUM) boosting 
their performance on CNN/DM and XSum datasets. Another significant work in this field has recently been accomplished by [133] who 
present SimCLS, a two-stage learning contrastive framework. SimCLS uses BART (for CNN/DM corpus) and Pegasus (for XSUM corpus) 
as the first learning stage to generate candidate summaries. Then, as a second learning stage, RoBERTa is used as an evaluation model 
and trained with contrastive learning to predict the performance of candidate summaries based on the source document. As a result, 
SimCLS boosts BART performance by a 2.51 ROUGE-1 score dominating all SotA models with respect to ROUGE metric. The full results 
are demonstrated in Section 7.2.1. Table 7 compares the architecture details of the aforementioned work of adapting Transformers and 
PTLMs. 

6. Datasets 

6.1. Abstractive ATS datasets 

Various annotated datasets are designed for abstractive ATS targeting different tasks. Some are proposed for training models on 
short input documents to generate short summaries, while others are proposed for long documents and summaries. Moreover, these 
corpora are gathered from various domains, such as news articles, scholarly articles, stories., etc. Most datasets are written in English. 
However, there are several datasets written in other languages. In general, the majority of these datasets are news articles in the 
English language. Details of the dataset in the abstractive ATS field are described in Table 10. 

Firstly, for short documents, DUC2, Gigaword [28,185,186], CNN/DM [16,187], and XSum [188] are the commonly used 
abstractive ATS benchmarks. Document Understanding Conference (DUC) consists of several publications (DUC-2001 - DUC-2007). 
For example, DUC-2004 corpus contains 500 articles, each with 4 reference summaries, compiled from the New York Times Associated 
Press Wire. This dataset targets two tasks given a short article. The first task is to generate very short summaries (<=75 Bytes). The 
second task is to generate short summaries (<=665 Bytes). However, this dataset is rather small and thus unsuitable for training the 
data-hungry DL neural models that require a wealth of data to learn. Instead, it is mostly used to evaluate and test models to assess their 
generalizability and robustness capabilities. 

Gigaword corpus [185,186] is filtered by Rush et al., [28] to contain 4M examples of article-title pairs. The task of this dataset is to 
generate a headline given the first sentence of an article. This dataset is collected from seven sources of news article publishers, which 
are Agence France-Presse-English Service (afp_eng), Associated Press Worldstream-English Service (apw_eng), Central News Agency of 
Taiwan-English Service (cna_eng), Los Angeles Times/Washington Post Newswire Service (ltw_eng), Washington Post/Bloomberg 
Newswire Service (wpb_eng), New York Times Newswire Service (nyt_eng), and Xinhua News Agency-English Service (xin_eng). 
However, since most of the modern abstractive ATS research work focuses on summarizing multiple sentences, the Gigaword corpus is 
rarely used in training modern models. 

Later after that, the QA task dataset CNN/DM [187], was modified by Nallapati et al., [16] for the abstractive ATS task. This dataset 
then became the most widely used in abstractive ATS research for empirical comparisons. The CNN/DM dataset has been released in 
two versions: anonymized and non-anonymized. In the anonymized version, named entities, such as the names of people, sites, 
countries, etc., are replaced by unique identifiers. Whereas in the non-anonymized version, the original text is preserved without 
modifications. Nallapati et al., [16] have used the anonymized version in their experiments, while See et al., [18] favoured using the 
original non-anonymized version. Most of the following researchers followed See et al.’s selection and used the original 
non-anonymized version of the CNN/DM dataset. This annotated dataset contains 287,227 training pairs, 13,368 validation pairs, and 
11,490 test pairs. Each of these pairs consisted of an English news article from either CNN (93K) or The Daily Mail (220K), accom-
panied by a multi-sentence summary as bullet points concatenated to form regular sentences. Overall, the average document length in 
this corpus is around 30 sentences, with an average of almost 700 tokens per sentence. While the average length of summaries is 3-4 
sentences, with an average of approximately 50 tokens each. 

Recently, XSum [188] was created, providing more abstractive examples to enhance the novelty levels of abstractive ATS models, 
as described in Section 6.2. This corpus is divided into 90% for training pairs, and 5% for each validation and test pairs, collected from 
BBC articles from various fields. In this dataset, the input is a single article that contains around 20 sentences of 400 tokens. And the 
output is a single short sentence of around 23 tokens summary that answers the question “What is the article about?”. 

2 http://duc.nist.gov/ 
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Table 8 compares CNN/DM and XSum in detail. Most of these details are collected from [16,29,98,164,183,188]. Density and 
compression ratio measurements are described in Section 6.2. 

Secondly, for long documents, several datasets are collected from different fields such as scientific papers (arXiv [97] and 
PubMed [97]), patent documents (BIGPATENT [98]), congressional bills (BillSum [189]), and accountability reports (GOVREPORT 
[156]). Currently, arXiv, PubMed, and BIGPATENT are the most widely used long-document abstractive ATS benchmarks. The task of 
these datasets is to generate an abstract from a paper body (or patent description). In these datasets, the average document length is 
ranging from 3k-5k tokens, and their accompanied summaries lengths are averaged around 200 tokens. Table 9 compares these 
datasets in detail and shows some important statistics. Density and compression ratio metrics are defined in Section 6.2. 

More recently, GOVREPORT [156] and BillSum [189] datasets were published with a more even spread of important information 
throughout the document. GOVREPORT includes significantly longer documents (9.4K tokens) and summaries (550 tokens) collected 
from the U.S. Government Accountability Office and the Congressional Research Service. On the other hand, BillSum dataset [189] is 
collected from US Congressional and California state bills including an average of 1.8K-word input documents and 200-word 
summaries. 

However, both GOVREPORT and GOVREPORT can be used for evaluation purposes as the number of their examples is relatively 
small (19.4K and 23.5K documents, respectively) and insufficient for training DL-based models. 

Additionally, Text Analysis Conference (TAC)3 has released several benchmarks for different ATS types such as update ATS 
(TAC2008), opinion ATS (TAC2008 and TAC2009), guided ATS (TAC2010 and TAC2011), and multi-lingual multi-document ATS 
(TAC2011). The latest TAC edition for ATS, TAC20144, focuses on summarizing scientific articles by incorporating details from other 
citing papers to improve the quality and informativeness of the generated summaries. Specifically, it covers 20 topics in the biomedical 
domain, each consisting of a reference paper and several papers that cite it. Each reference paper is accompanied by four scientific 
summaries written by experts in the biomedical field. The length of these summaries is less than 250 words. However, the TAC2014 
dataset is relatively small and not suitable for training deep neural abstractive ATS models. 

Thirdly, for other domains, the WikiHow dataset [190] consists of instructional steps from WikiHow.com accompanied by 
summaries, and Reddit TIFU [191] contains stories examples along with their summaries. 

Finally, for other languages, LCSTS [112] contains 2.4M Chinese article-summary pairs, compiled from China-based microblogs, 
Sina Weibo, Verified Chinese media and organizations Weibo.com. LCSTS is the largest non-English dataset. Moreover, MLSUM [192] 
contains over 1.5M examples of multi-lingual articles collected from five sources of five different languages: Le Monde (French), 
Suddeutsche Zeitung (German), El Pais (Spanish), Moskovskij Komsomolets (Russian), and Internet Haber (Turkish). The task is to 
generate a multi-sentence abstractive summary given an article written in the same language. 

Table 10 outlines the specifications for the most widely used ATS datasets. 

Table 7 
A comparison among various PTLM-based abstractive ATS models.  

Research Year Model name Main idea Architecture(s) 
used 

PTLM(s)/Framework(s) 
used 

Egonmwan and Chali  
[85] 

2019 TRANS-ext + filter +abs Dual-Encoding Transformer, GRU - 

Zhang et al., [181] 2019 Two-Stage + RL Dual-Decoding Transformer BERT 
Khandelwal et al.,  

[182] 
2019 Transformer LM Decoder-Only Transformer GPT-2 

Hoang et al., [183] 2019 Transformer-SM Various training strategies Transformer GPT 
Edunov et al., [184] 2019 SRC-ELMO+SHDEMB Feature-based adaptation Transformer, 

LSTM 
BERT, GPT, ELMo 

Wang et al. [64] 2019 (m7) BEAR (large +
WordPiece) 

Ext+AbstExt+AbstExt+Abst Transformer, GRU BERT 

Bae et al., [149] 2019 BERT-ext + abs + RL +
rerank 

Transformer, 
LSTM 

BERT 

Liu and Lapata [164] 2020 BERTSUMEXTABS Transformer BERT 
Dou et al., [122] 2020 GSum (BART+MatchSum) Generation-guide mechanism 

Dual-EncodingGeneration-guide 
mechanism 
Dual-EncodingGeneration-guide 
mechanism 
Dual-EncodingGeneration-guide 
mechanism 
Dual-Encoding 

Transformer  BART, BERTSUMABS 

Saito et al., [121] 2020 CIT Transformer  BART, RoBERTa 

Zhu et al., [127] 2020 Corrected by FC Transformer BART, RoBERTa, UniLM 

Liu et al [132] 2021 Refactor Two-stage learning Transformer GSum, Pegasus 
Liu and Liu [133] 2021 SimCLS Transformer BART, Pegasus, GSum, 

ProphetNet  

3 https://tac.nist.gov/  
4 https://tac.nist.gov/2014/ 
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6.2. Novelty of abstractive ATS datasets 

Grusky et al., [193] measures the novelty of datasets using coverage and density metrics. Coverage metric calculates the percentage 
of words in the generated summary that are extracted from the original document. While density metric computes the average length 
of the extractive fragment to which each word in the summary belongs, i.e., extracted spans: 

Coverage(A, S) =
1
|s|

∑

f∈F (A,S)

|f | (11)  

Density(A, S) =
1
|s|

∑

f∈F (A,S)

|f |2 (12)  

where A is the original document, S is the generated summary, and f ∈ F(A, S) are all extracted fragments. 
Both measurements could be translated in terms of novelty as follows: Higher coverage and density scores mean more extrac-

tiveness. Whereas lower coverage and density scores indicate more new words and smaller extracted text spans, respectively, which 
means higher novelty levels. 

Another measurement suggested by [193] is the compression ratio between the original document and the generated summary. 
This score estimates the length of the generated summary compared to the original text. The compression ration can be calculated as 
follows: 

Compression(A, S) =
|A|
|S|

(13) 

A higher compression ratio means more challenges with the long-text problem, described in Section 8.1. These metrics can be used 
to compare datasets for their level of novelty and how long their summaries relate to the original text. 

As can be seen in Fig. 13 and Table 8, although the CNN/DM corpus [16,187] is considered as an abstractive ATS dataset, it has high 
degrees of density and coverage and low ratios of novel n-grams, which means that its extractiveness level is high and thereby it is 
skewed towards extractive summaries [193]. In contrast, summaries of XSum [188] and Reddit TIFU [191] corpora are more 
abstractive as they have lower density and coverage scores and higher ratios of novel n-grams [7]. Moreover, Fig. 14 shows that XSum 
has the highest levels of novelty among all other datasets. 

For long document ATS datasets, Bigpatent [98] encompasses the best summaries in terms of novelty with the lowest density scores, 
as shown in Table 9. However, the two scientific papers corpora, arXiv and PubMed [97] have a tendency toward extractive ap-
proaches. As shown in Fig. 15, both datasets have high percentages of n-grams copied from the source article to the target summary. 

7. Evaluation metrics and comparisons 

7.1. Abstractive ATS evaluation metrics 

Because measuring the correctness of summaries is difficult, most abstractive ATS research uses ROUGE [5] as the standard 
evaluation metric. ROUGE, stands for Recall-Oriented Understudy for Gisting Evaluation, includes a set of scores for evaluating 
abstractive ATS and MT tasks. ROUGE metric is designed to measure the lexical similarity, i.e., the overlap, of n-grams between the 
resulting summary and a reference, usually a human-written summary. Specifically, there are three main measurements for evaluating 

Table 8 
CNN/DM and XSum corpora statistics.    

CNN/DM XSum 

Split Size Train 287,227 204,045 
Validation 13,368 11,332 
Test 11,490 11,334 
Total 312,085 226,711 

Average (Sentences) Input 30.71 19.77 
Summary 3.78 1.00 

Average (Tokens) Input 685.17 431.07 
Summary 51.99 23.26 

Median (Tokens) Input 777 359 
Summary 59 25 

90 Percentiles (Tokens) Input 1439 920 
Summary 93 32 

Novelty % 1-gram 12.70 34.88 
2-gram 46.29 78.78 
3-gram 65.04 92.03 
4-gram 75.56 96.80 

Compression Ratio 13.0 18.8 
Density 3.8 1.2  
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Table 9 
arXiv, PubMed, and Bigpatent corpora comparison.  

Dataset Examples Split Input Statistics Summary Statistics Compression Ratio Density 
Train Valid. Test Total Tokens Average Tokens Median Tokens 90 percentiles Tokens Average Tokens Median Tokens 90 percentiles 

arXiv 203,037 6436 6440 215K 4938 6151 14405 220 171 352 39.8 3.8 
PubMed 119,924 6633 6658 133k 3016 2715 6101 203 212 318 16.2 5.8 
Bigpatent 1,207,222 670,68 67072 1.3M 3573 3082 7693 116.5 123 197 36.4 2.4  

A
. A
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Table 10 
Specifications of commonly used ATS datasets.  

Dataset Date 
Created 

Author(s) # of Pair- 
Examples 

Source / Period Task Input Output 

News Articles (Short 
Documents)        

Document 
Understanding 
Conference 
DUC 

2001- 
2007 

http://duc.nist.gov/ 500 articles 
(DUC-2004) 

New York Times 
Associated Press Wire (DUC-2004) 

Sentence-level 
Summarization 

Single article Task 1: 
Very-Short summaries  
Task 2: Short summaries 

Gigaword 2015 Graff et al., [185], Napoles 
et al., [186], and Rush et al.,  
[28] 

4M Seven sources: 
1994-2010 

Abstractive Head-Line 
Generation 

Article’s first 
sentence 

Sentence Paraphrases 

CNN/DailyMail 2015 Hermann et al., [187], and 
Nallapati et al. [16] 

312K CNN newspaper (93K) 
The Daily Mail newspaper (219K)  
2007-2015 

Abstractive multi- 
sentence summarization 

Single article Multi-sentence summaries. 

XSum 2018 Narayan et al. [188] 227k BBC articles  
2010-2017 

Abstractive single- 
sentence Summarization 

Single article Single-sentence summaries  

Scientific Articles 
(Long Documents)        

arXiv 2018 Cohan et al. [97] 215k arXiv.org Long document ATS Paper body Abstract 
PubMed 2018 Cohan et al. [97] 133k PubMed.com Long document ATS Paper body Abstract 
BIGPATENT 2019 Sharma et al. [98] 1.3M Google Patents Public Datasets using 

BigQuery, after 1971 across nine different 
technologies 

Long document ATS Patent description Abstract 

Other Domains        
WikiHow 2018 Koupaee& Wang [190] 200K Dataset of instructions from WikiHow.com Abstractive multi- 

sentence summarization  
Article of multiple 
instructions 

Multi-sentence summaries 

Reddit TIFU 2019 Kim et al. [191] 120K Informal stories from Reddit.com  
2013-2018 

Abstractive 
summarization 

Online post  Long or short summary 
sentence 

Other Languages        
LCSTS 2015 Hu et al. [112] 2.4M Weibo.com Abstractive Chinese 

Short summarization 
Single Article Short Summary 

MLSUM 2020 Scialom et al. [192] 1.5M+ Multilingual dataset  
Five sources for five different languages 
2010-2019 

Abstractive 
Summarization 

Article written in 
one language 

Multi-sentence summary 
generated in the same 
language  

A
. A
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word overlap, namely, Recall, Precision, and F1. 
Recall measures how much the generated summary captures the reference summary, and it is calculated as follows: 

recall =
ow
rw

(14)  

where ow is the number of overlapping words, and rw is the word count for the reference summary. However, the problem of this 
measurement is that it prefers longer summaries. 

Precision solves the previous problem by measuring how much of the generated summary is relevant, i.e., the suitability of the 

Fig. 13. Coverage and density comparison of various datasets. Darker blocks indicate higher percentages, and n is the number of examples in the 
dataset [7]. 

Fig. 14. Novelty levels of short-document abstractive ATS datasets [98].  
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generated summary, and it is calculated as follows: 

precision =
ow
gw

(15)  

where gw is the number of generated summary words. In contrast to the recall score, the precision score favours shorter summaries. 
F1 balances both recall and precision grades by computing their harmonic mean as follows: 

F1 =
2 ∗ recall ∗ precision

recall + precision
(16) 

ROUGE-F1 is the most popular standard used to measure three scores of ROUGE, namely, ROUGE-1, ROUGE-2, and ROUGE-L. 
ROUGE-1 measures the overlap of unigrams, i.e., every single word, between the resulting and reference summaries. Whereas 
ROUGE-2 measures the overlap of bigrams, i.e., every two consecutive words, between the resulting and ground-truth summaries. 
Finally, ROUGE-L measures the longest common sequence between the resulting and reference summaries. 

Although ROUGE is the most widely used abstractive ATS metric, it has several limitations. ROUGE, which is used in the evaluation 
phase, is inconsistent with the cross-entropy loss function used during the training phase. Also, it is non-differentiable. These two 
problems of ROUGE were solved efficiently using RL-based approaches [99, 23], as discussed in Section 4.1. 

Furthermore, higher ROUGE scores do not actually guarantee higher quality and higher readability [99], but on the contrary, they 
often receive lower human ratings [137]. This is because ROUGE is unable to capture similarities at such high levels as semantic 
similarities but only focuses on local similarities. 

Fig. 15. The percentage of n-grams copied from the source document to the target summary of arXiv and PubMed corpora [75].  

Fig. 16. Focused and unfocused aspects of ROUGE metric.  
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Also, ROUGE metric fails to capture the novelty nature in high-quality summaries [23]. That is because summaries with high levels 
of novelty are most likely to include synonyms other than expressions included in the ground-truth summaries, resulting in reduced 
overlap scores and thereby lower ROUGE scores. Fig. 16 depicts the aspects on which ROUGE metric is focused. 

For other metrics, Meteor [194] and BLEU [195] are two well-known metrics that are mainly designed to measure MT results. 
However, these two metrics can also measure ATS results as well [18,113]. 

Recently, more robust semantic-based metrics have been proposed for abstractive ATS that correlate better with human evalua-
tions, such as VERT [196], MoverScore [197], and BERTScore [198]. VERT compares model-generated and ground-truth summaries 
by combining document-level similarity and word-level dissimilarity scores to measure the semantic similarity of the resulting 
summary. VERT has recently used by Boutkan et al., [106] in evaluating their results. In addition, MoverScore combines contextu-
alized embeddings with Earth Mover’s Distance [199] that measures semantic distance between texts. More recently, BERTScore uses 
contextual embeddings to compute semantic similarities. MoverScore and BERTScore are starting to gain popularity in evaluating 
abstractive ATS research models [128,133]. 

Table 11 
ROUGE results of the best short-document abstractive ATS models on CNN/DM, XSum, and Gigaword datasets grouped by the model architecture. R is 
short for ROUGE. ‘* ’ indicates the model is trained and evaluated on the anonymized CNN/DM dataset. BOLD indicates the top performing models in 
each category. Underlined indicates the overall top performing models.  

Research Year Model name CNN/DM XSum Gigaword 
R-1 R-2 R-L R- 

AVG 
R-1/R2-/R-L R-1/R2-/R-L 

Best Deep Sequence-to-Sequence Models 
Nallapati et al.* [16] 2016 words-lvt2k-temp-att 35.46 13.30 32.65 27.14 - 35.30/16.64/ 

32.62 
See et al. [18] 2017 PG + coverage 39.53 17.28 36.38 31.06 28.10/8.02/21.72  

[188] 
- 

Paulus et al.* [99] 2017 ML, with intra-attention 38.30 14.81 35.49 29.53 - - 
Narayan et al. [188] 2018 T-CONVS2S - - - - 31.89/11.54/25.75 - 
Al-Sabahi et al. [70] 2018 Bidir_Rev_Cov 42.60 18.80 38.50 33.30 - - 
Zhang et al. [77] 2019 CNN-2sent-hieco-RBM 42.04 19.77 39.42 33.74 - 37.95/18.64/ 

35.11 
Best RL-Based Models 
Paulus et al. * [99] 2017 RL, with intra-attention 41.16 15.75 39.08 32.00 - - 
Chen and Bansal *  

[20] 
2018 rnn-ext + abs + RL + rerank 40.88 17.8 38.54 32.41 - - 

Gehrmann et al. [22] 2018 Bottom-Up 41.22 18.68 38.34 32.75 - - 
Celikyilmaz et al.  

[100] 
2018 DCA 41.69 19.47 37.92 33.03 - - 

Best Fine-Tuned PTLMs 
Lewis et al. [10] 2019 BART 44.16 21.28 40.90 35.45 45.14/22.27/37.25 - 
Raffel et al. [8] 2019 T5-11B 43.52 21.55 40.69 35.25 - - 
Dong et al. [163] 2019 UniLM 43.33 20.21 40.51 34.68 42.14/19.53/34.13 38.45/19.45/ 

35.75 
Zhang et al. [7] 2020 PEGASUS (HugeNews) 44.17 21.47 41.11 35.58 47.21/24.56/39.25 39.12/19.86/ 

36.24 
PEGASUS (C4) 43.90 21.20 40.76 35.29 45.20/22.06/36.99 38.75/19.96/ 

36.14 
Yan et al. [159] 2020 ProphetNet 44.20 21.17 41.30 35.56 - 39.51/20.42/ 

36.69 
Zou et al. [171] 2020 STEP 44.03 21.13 41.20 35.45 43.02/20.11/35.34 - 
Xiao et al. [160] 2020 ERNIE-GEN (16GB) 44.02 21.17 41.26 35.48 - 39.25/20.25/ 

36.53 
ERNIE-GEN (430GB) 44.31 21.35 41.60 35.75 - - 

Bao et al. [170] 2020 UNILMv2-Base-relative position 
bias 

43.45 20.71 40.49 34.88 (Base) 44.00/21.11/ 
36.08 

- 

Zhu et al. [127] 2021 UNILM Corrected by FC 42.75 20.07 39.83 34.22 42.18/ 19.53/34.15 - 
Best PTLM-Based Models 
Bae et al. [149] 2019 BERT-ext + abs + RL + rerank 41.90 19.08 39.64 33.54 - - 
Song et al. [147] 2020 Beam+BPNorm - - - - - 39.19/20.38/ 

36.69 
Beam+SBWR - - - - - 39.08/20.47/ 

36.68 
Dou et al. [122] 2020 GSum (BART+MatchSum) 45.94 22.32 42.48 36.91 45.40/21.89/36.67 - 
Saito et al. [121] 2020 CIT 45.74 22.50 42.44 36.89 45.42/22.13/36.92 - 
Liu et al., [132] 2021 Refactor-BART-rerank-FT 45.15 21.70 42.00 36.28   

Refactor-GSUM-rerank-FT 46.18 22.36 42.91 37.15   
Refactor-Pegasus-rerank-PT - - - - 47.45/24.55/39.41  

Liu and Liu [133] 2021 SimCLS 46.67 22.15 43.54 37.45 47.61/24.57/ 39.44   
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Fig. 17. ROUGE results of best models on the CNN/DM dataset.  
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7.2. Comparisons of selected models 

This section compares selected models that achieve the best results in both short and long document summarization. As mentioned 
earlier, ROUGE is currently the commonly used metric in Abstractive ATS research work. Therefore, all comparisons in this section will 
be based on ROUGE scores to ensure fairness. 

For short-length document abstractive ATS research, the ROUGE results for modern neural models have improved over time. First, 
by using different DL-based techniques and architectures in sequence-to-sequence models, such as attention mechanism [28], copy 
mechanism [16], coverage mechanism [18], generation guide [49,63], CNN [77], and bidirectional encoder-decoder architecture 
[70], which are described in Section 3. Next, by incorporating RL approaches [20,22,99,100], which are discussed in Section 4. Then, 
the adaptation of PTLMs to abstractive ATS showed significant improvements in performance and ROUGE scores [7,8,10,159,163], 
which are described in Section 5. 

Currently, an important research trend that yields to SotA performance is to find the most appropriate PTLMs and model archi-
tectures for abstractive ATS using different techniques, such as knowledge-enhanced and tow-stage learning, to efficiently adapt pre- 
trained global representations of these PTLMs for abstractive ATS to enhance the outcomes [121,122,132,133], as discussed in Section 
8.3. 

Recently, summarizing very long documents that contain thousands of words has attracted researchers due to its importance and 
usefulness to societies. This research trend particularly comes after incorporating huge contextual PTLMs and the availability of new 
long-document datasets shown in Section 6.1. 

7.2.1. Short-document summarization models 
Below is a comparison of the best performing short-document abstractive ATS models based on ROUGE metric [5], which is the 

most widely used abstractive ATS metric, on three popular datasets, CNN/DM, XSum, and Gigaword, grouped by model architecture: 
Deep sequence-to-sequence models, RL-based models, fine-tuned PTLMs, and PLTM-based models. 

As mentioned in Table 11, SimCLS [133] delivers the best performance on the most widely used dataset, CNN/DM, boosting the 
performance of top-performing models in ROUGE-1 and ROUGE-L scores with SotA results of 46.67 and 43.54, respectively. While all 
other models in ROUGE-2 were dominated by the CIT model [121]. Also, SimCLS [133] outperforms all models on the XSUM corpus. 
Finally, for the Gigaword dataset, ProphetNet [159] and Beam+SBWR [147] are the top-performing models offering the best ROUGE 
scores. 

Table 11 compares the top-performing short-document abstractive ATS models discussed throughout this paper on the CNN/DM, 
XSum, and Gigaword datasets with respect to the ROUGE scale. Fig. 17 shows the comparison charts for these models on the CNN/DM 
dataset. 

7.2.2. Long-document summarization models 
As discussed in Section 2.7, research on long-document abstractive ATS is scanty and still at the beginning compared to short- 

document abstractive ATS. Table 12 compares selected long-document abstractive ATS models that achieve the best ROUGE scores 
on three datasets: arXiv [97], PubMed [97], and BigPatent [98]. These corpora are described in detail in Section 6.1. Fig. 18 shows the 
comparison charts for these models on arXiv and PubMed datasets. As noted, BigBird-PEGASUS [29] and LSH+HEPOS [156] are the 
best performing models. 

8. Discussions 

8.1. Problems, solutions, and current challenges 

During the past six years, research works to improve outcomes for abstractive ATS have faced many challenges. This section 
discusses the evolution of problems and their solutions as well as current challenges in abstractive ATS research in the three main 
models discussed in this article: Deep neural sequence-to-sequence models, Deep RL-based models, and PTLMs. 

Table 12 
ROUGE results of the best long-document abstractive ATS models. R is short for ROUGE. BOLD indicates the top performing models.  

Research Year Model name arXiv PubMed BigPatent 
R-1/R-2/R-L R-1/R-2/R-L R-1/R-2/R-L 

Cohan et al. [97] 2018 Attention Seq2Seq 29.30/6.00/25.56 31.55/8.52/27.38 - 
Cohan et al. [97] 2018 Pointer-Generator 32.06/9.04/25.16 35.86/10.22/29.69 - 
Cohan et al. [97] 2018 Discourse-Aware 35.80/11.05/31.80 38.93/15.37/35.21 - 
Pilault et al. [65] 2020 TLM-I+E (G,M) 41.62/14.69/38.03 42.13/16.27/39.21 38.65/12.31/34.09 
Xiao and Carenini [180] 2020 ExtSum-LG++RdLoss 44.01/17.79/39.09 45.30/20.42/40.95 - 
Xiao and Carenini [180] 2020 ExtSum-LG+MMR-Select+ 43.87/17.50/38.97 45.39/20.37/40.99 - 
Zhang et al. [7] 2020 PEGASUS 44.21/16.95/38.83 45.97/20.15/41.34 52.29/33.08/41.66 
Gidiotis and Tsoumakas [75] 2020 DANCER PEGASUS 45.01/17.60/40.56 46.34/19.97 /42.42 - 
Zaheer et al. [29] 2020 BigBird-PEGASUS 46.63/19.02/41.77 46.32/20.65/42.33 60.64/42.46/50.01 
Huang et al. [156] 2021 LSH+HEPOS 48.24/20.26/41.78 48.12/21.06/42.72   
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Deep neural sequence-to-sequence models normally focus on summarizing short-length documents. Various approaches have been 
proposed to deal with several issues, such as long-term dependencies, vanishing and exploding gradients, inaccurate and fake de-
tailing, OOV words, repetition, lack of faithfulness, as well as difficulty in controlling outputs. These problems occur especially when 
processing longer entries. 

Many solutions have been offered based on deep sequence-to-sequence-based approaches. For the problem of long-term de-
pendencies, several architectures and techniques have been proposed. Firstly, as discussed in Section 2.4, LSTM [71] and GRU [67] 
were found mainly to deal with such dependencies in the text and overcome the gradient-vanishing problem [72] using gating 
mechanisms. However, LSTM and GRU still struggle to handle such dependencies when the input document is lengthy. More recently, 
RUM [74] was discovered to better deal with the problem of long-term dependencies. Similarly, the attention mechanism is proposed 
to handle longer dependencies, as discussed in Section 3.1.1. 

Next, the copy mechanism, as discussed in Section 3.1.3, was proposed to solve the problems of OOV words and inaccurate factual 
details by allowing the model to borrow some phrases from the original text to ensure generating accurate details. However, this 
mechanism leads to the problem of low novelty as the models tend to include a large number of phrases from the original text in the 
summary generated. Solutions to this problem are provided through RL- and TL-based approaches. These shall be discussed later in this 
section. 

Then, the coverage mechanism, which is discussed in Section 3.1.4, was proposed to ensure that there is no repetition in the 
generated summary. It works by tracing the summary phrases, paying more attention to un-summarized parts, and less attention to the 
parts that have already been summarized. 

Moreover, the knowledge-enhanced mechanism (Section 3.1.5) was proposed to increase the readability, informativeness, and 
faithfulness of the generated summaries. It integrates other useful information, i.e., training signals, entered to the model with the 
input sequence to control the outputs to improve the quality and accuracy of the results. 

Although the previously discussed deep sequence-to-sequence based approaches have succeeded in solving some problems effi-
ciently, there are other issues that require methods beyond DL such as RL- and TL-based approaches. Deep sequence-to-sequence 
models still produce low-quality and incoherent summaries, especially when the length of the input text is increased. Also, their 
summaries resulted in high copy rates, including many phrases from the source document leading to the problem of low novelty. 
Moreover, supervised deep sequence-to-sequence models are usually trained to expect the next word in the generated summary based 
only on the maximum likelihood objective function. This in turn leads to two inconsistency problems between the training and testing 
phases in terms of reference summaries and metrics used: the exposure-bias and the loss/evaluation mismatch problems. The exposure- 
bias problem [138] occurs when the model receives its inputs from different sources during the training and testing steps. In training, 
the decoder deals with the ground-truth summaries to be trained and generate results, while the model relies on its own output to 
produce the tokens during the testing phase. On the other hand, the problem of inconsistency between training and testing evaluation 
measurements occurs when the model uses dissimilar loss/evaluation metrics during training, i.e., cross-entropy loss, and testing, i.e., 
ROUGE. The consequences of these two problems may lead to error accumulation while generating the output at test time, resulting in 
inconsistent/low-quality summaries [19,139,140]. Another drawback of deep sequence-to-sequence models is that, during testing, the 
models are unable to generalize to datasets other than those they have already been trained on. 

As described in detail in Section 4.1 and summarized in Table 4, solutions to the above problems are offered by incorporating RL 
approaches. However, deep RL-based models are still incapable to efficiently handle some of the issues. They still generate low-quality, 
low-novelty summaries, especially for very long documents with thousands of words such as scholarly articles. That is because these 
models train on limited amounts of annotated data resulting in poor semantic and contextual features of word embeddings. 
Furthermore, the sequential nature of these models prevents them from taking advantage of parallel processing during training and 
testing, which leads to low training speeds. 

Utilizing Transformer-based PTLMs can efficiently solve the above-mentioned issues. Specifically, Transformers can efficiently 

Fig. 18. ROUGE results of best models on arXiv and PubMed datasets.  
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learn very long-range dependencies in very long documents using the self-attention mechanism which can parallelly model similarities 
between tokens regardless of their positions, as described in Section 2.7 and Section 5.1. Moreover, PTLMs can learn syntactic and 
semantic knowledge through training on unannotated huge data, then they can be fine-tuned to downstream tasks with annotated and 
small data. As a result, adapting PTLMs to abstractive ATS has greatly advanced the SotA by optimizing the quality, novelty, and 
fluency of summaries generated, even for very long documents, in a high-speed training time. 

However, quadratic memory and computational complexities are the main drawback of the self-attention mechanism used by the 
Transformer. Furthermore, the large number of operations and the fixed-length context required when dealing with long sequences are 
other obstacles. Solutions to these problems are presented by various efficient Transformers (such as Reformer [153], Sparse Trans-
former [154], Transformer-XL [155]), and self-attentions (e.g. sparse, locality-sensitive hashing, HEPOS [156]), which are further 
discussed in [157] and [156]. 

Currently, finding the best PTLM(s) for abstractive ATS and adapting it efficiently remains an open research challenge to refine 
outcomes and approach human abstracts (Refer to Section 5.2.4). 

Table 13 summarizes the aforementioned challenges and other problems discussed earlier throughout this article, together with 
their solutions. Fig. 19 summarizes the evolution of these problems and their solutions for various abstractive ATS models approaches. 

8.2. Abstractive ATS and MT research 

From the findings, we can conclude that the research work on MT has received the most attention from researchers, and it leads 
many NLP areas with respect to performance and quality of results. That is because the MT field received the largest share of datasets 
among all other NLP tasks [161]. Furthermore, the importance of MT in the economic and academic fields plays an essential role in 
persuading large businesses and academic institution laboratories to pay more attention to this field. 

Both TG tasks, abstractive ATS and MT, are similar in terms of converting text from one format to another, and both require a high- 
level and deep understanding of the meanings of words and sentences to accomplish their tasks. Consequently, it is not surprising to 
notice that ATS research traces the MT’s steps and applies its techniques and ideas, such as attention mechanism [66], coverage 
mechanism [118,119], generation guide mechanism [62], and others. Table 14 summarizes the techniques and mechanisms of ATS 
research work inspired by the MT field. 

For that, tracking and utilizing the SotA techniques and advances in the field of MT will enrich the research work of abstractive ATS 
and enhance the quality of its outcomes. 

8.3. Future research directions 

As the study concluded for future directions, the most significant and recent open research areas in the abstractive ATS field can be 
summarized as follows:  

i To find better PTLMs: Leveraging PTLMs in abstractive ATS models shows significant enhancement in results, refer to Section 
7.2. Many PLTMs have been developed with different architectures, features and objectives, refer to Section 5.2. Some of these 
PTLMs are more suitable for abstractive ATS than others. Many researchers have attempted to adapt PTLMs in various ways to 
abstractive ATS to enhance their results (refer to Table 7). Finding the best PTLM, or combination of complementary PTLMs, for 
the abstractive ATS task and efficiently adapting it (them) to enhance the generated abstractive summaries’ quality is a research 
trend. 

ii More efficient Transformers: Recently, more efficient Transformers and attentions have been introduced with better per-
formance, less memory and computational complexity, and faster and more stable training to handle short and long documents 
more efficiently. Examples of such architectures include Transformer-XL [155], Sparse Transformer [154], Reformer [153], 
Switch Transformers [9], and many more. Utilizing these architectures will improve the results of different NLP tasks, including 
abstractive ATS, especially for long documents. Refer to Section 5.1  

iii Multi-reward: The use of multi-reward RL, which can be user-defined and non-differentiable rewards, is highly suggested to 
improve various important aspects of abstractive ATS. Examples of these aspects include readability, coherency, syntax, non- 
redundancy, sentence ordering, conciseness, information diversity, information coverage, saliency, and entailment [87]. Refer 
to Section 4.  

iv Semantic-based metrics: As discussed in Section 4.3 and Section 7.1, ROUGE metric [5], the most common evaluation metric 
used in abstractive ATS research, provides no insight into novelty, readability, global and semantics similarities. Also, Rouge’s 
high scores summaries often achieve a low human rating [64,106], refer to Fig. 16. Therefore, more semantic-based evaluation 
metrics need to be developed to transcend the limitations of ROUGE, which relies more on syntactic terms. Recently, VERT, 
MoverScore, and BERTScore are recently developed as new semantic similarity metrics, but are still not as popular in research as 
ROUGE. Other attempts were made by [108,137,23,150,151], and [193]. Overall, the area of research for abstract ATS remains 
weak in finding robust semantic metrics that accurately characterize the competency aspect and correlate well with human 
assessments. Moreover, the novelty score is inversely proportional to that of ROUGE. Therefore, finding an optimal measure-
ment is still an open research question.  

v Increase novelty levels: Novelty is the main characteristic that distinguishes abstractive summaries from other genres. In early 
work, as discussed in Section 4.1 and Section 4.3, most abstractive ATS models suffered from very high copy rates, i.e., low 
levels of novelty, and thereby the resulting summaries were more likely to be extractive than abstractive. One of the main 
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Table 13 
The evolution of abstractive ATS sequence-to-sequence models: problems and solutions.  

Model/Architecture with Problem Problem(s) Proposed Solution Justification for the Proposed Solution 

Traditional deep neural networks  • Handling unstructured data  
• Handling variable-length 

inputs  
• Handling input sequence 

dependencies 

RNN [69] By its sequence nature and ability to feedback prior 
layers to maintain memory inputs and model 
problems in time, and its ability to capture 
unbounded (variable) context. 

Vanilla RNN architecture Vanishing Gradient Problem  • LSTM [71]  
• GRU [67] 

By their ability to capture long-term dependencies 

Vanilla RNN architecture Exploding Gradient Problem Gradient Norm Clipping 
strategy [73] 

By rescaling their norm whenever it goes over a 
threshold. 

Unidirectional RNN, LSTM, GRU Limited awareness of the sentence 
context 

Bidirectional RNN, LSTM, 
GRU [70] 

By allowing each hidden state to be aware of the 
contextual information from both directions, i.e., 
past and future contexts. 

RNN, LSTM, GRU Sequential nature CNN [76,77] 
Transformer [4] 

By computing each element in the sequence in 
parallel during training and evaluation 

Greedy search Words disorder in sentences Beam Search [107]. By their ability to guarantee the right order of the 
sentence words. 

Beam search Diversity problem Diverse Beam Search 
(DBS) [109–111] 

By producing diverse outputs by optimizing for a 
diversity-augmented objective. 

Beam search Local Optima Generation guide 
mechanism (value 
network) [62] 

By predicting long-term rewards to be received in the 
future. 

Basic deep sequence-to sequence 
models 

Long-term dependencies in long 
sequences   

• Attention 
Mechanisms  

[3,4,106,200,16,28,66, 
99,101,103–105]   

• RUM [74]  

• Attention: By allowing the encoder to focus 
only on the most important parts to save 
more memory and then work efficiently.  

• RUM: By handling memory copying and 
memory recall tasks better than LSTMs and 
GRUs. 

Deep sequence-to-sequence 
models with Attention  

• Inaccurate factual details  
• OOV words problem 

Pointer Generator 
[14–18,116,117] 

By its ability to use either synonyms or original 
words. 

Deep sequence-to-sequence 
models with Attention and 
Pointer-Generator 

Repeated statements  • Coverage 
Mechanism [18, 
118–120]  

• RL [99] 

By keep tracking of what has been generated in the 
summary 

Deep sequence-to-sequence 
models with Attention, 
Pointer-Generator, and 
Coverage mechanisms  

• Unfaithfulness (lack of key 
information)  

• Semantic irrelevancy  
• Fake information  
• Difficult to control the output  
• Difficult to control the 

summary length 

Knowledge-enhanced 
(generation-guide) 
[49,62,63] 

By incorporating useful information (training 
signals) with the input sequence to be entered into 
the model to guide the generation process, control 
the output, and improve the quality and accuracy of 
the results. 

Sequence-to-Sequence models 
with various DL-based 
mechanisms  

• Large text input  
• Low novelty  
• Exposure-bias  
• Loss/Evaluation mismatch  
• Lack of generalization 

RL 
[19,20,23,99,100,106, 
111,139,140,145] 

Details in Table 4 

Deep sequence-to-Sequence 
models with RL approaches   

• Poor semantic and context 
features of embeddings  

• Sequential nature  
• Low-speed training  
• Low-quality summaries  
• Low-novelty summaries  

• Transformers [4]  
• PTLMs (TL) 
[7,8,10,127,159,160,163, 
164,170,171]  

• Transformers can efficiently learn long- 
range dependencies using the self-attention 
mechanism which can parallelly model 
similarities between tokens regardless of 
their positions.  

• PTLMs can learn syntactic and semantic 
knowledge through training on unannotated 
huge data, then be fine-tuned to end-task 
annotated data. 

Deep sequence-to-Sequence 
models with TL approaches   

• Transformer’s self-attention 
Problems:  

• Its quadratic memory and 
computational complexities.  

• The large number of 
operations it requires when 
dealing with long sequences 

Efficient Transformers 
and self-attentions  
[153–156]  

By using different types of attention and 
architectures that reduce memory complexity, speed 
up training, train deeper networks with fewer 
operations, and enable models to understand context 
beyond a fixed length limitation.  

(continued on next page) 
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reasons for this problem, as discussed in Section 6.2, is the low novelty of datasets, such as CNN/DM [16,187]. Then, by taking 
advantage of the great enhancements of universal representations resulting from PTLMs and the development of novel datasets 
at more novelty levels, the novelty of abstractive ATS models has been greatly improved. However, the human levels of novelty 
in summarization are still a far cry from current abstractive ATS models. Thus, there is a need to focus more on enhancing the 
novelty levels of the resulting abstractive summaries and generate more datasets with high novelty and quality levels.  

vi Long-document ATS: As discussed in Section 2.7, it is noticed that the research work on summarizing long-length documents is 
little compared to short-document summarization. That is because summarizing long documents requires more complex 
hardware and efficient approaches to efficiently learn very long-range dependencies. Recently, through major developments in 
massive PTLMs, and the availability of new long-document datasets, the focus has arisen on summarizing very long documents 
containing thousands of words as scientific papers. This area of research is still at the beginning at it requires further 
improvements.  

vii Track MT research: As the study concluded, the tasks of MT and ATS are very similar, and the research work in the field of MT 
precedes the work on ATS research. As noticed in Table 14, abstractive ATS’s most successful research work traces and reuses 
MT research techniques and mechanisms. Therefore, utilizing the MT research’s SotA work will certainly improve abstractive 
ATS results even more.  

viii Extending best mechanisms to other datasets and types: As shown in Table 1, there are many different types of ATS. Some 
are more interesting to researchers than others, such as extractive [27], abstractive, text-output, short- and single-document, 
generic-domain, and mono-lingual ATS [28]. Also, as discussed in Section 6, many other abstractive ATS datasets exist with 
different setups. Therefore, extending the SotA approaches and mechanisms that used by SotA abstractive ATS models, such as 
knowledge-mechanisms and two-stage learning, to other types and datasets of ATS is encouraged. 

Table 13 (continued ) 

Model/Architecture with Problem Problem(s) Proposed Solution Justification for the Proposed Solution 

• Its fixed-length context pre-
requisite to learn long-term 
dependencies.  

• Finding the best PTLM and 
architecture for ATS  

• Efficiently Adapting pre- 
trained representations for 
ATS  

Fig. 19. Evolution of problems and solutions in sequence-sequence-based abstractive ATS models.  
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ix Non-English ATS: ATS research work in languages other than English is still very poor, as described in Section 6. One reason is 
the lack of available annotated datasets. Therefore, further attention to other languages is needed to enrich the research field of 
ATS. This can be done by developing new non-English datasets and extending SotA English abstractive ATS models’ approaches 
to other languages. Accordingly, the researchers of [14,112,120,139] worked on Chinese abstractive ATS achieving acceptable 
results. 

9. Conclusion 

This study explored recent developments in abstractive ATS research work in various aspects such as types, datasets, techniques, 
architectures, challenges, solutions, contributions, evaluation metrics, research trends, and SotA models comparisons. This is achieved 
by focusing on deep neural sequence-to-sequence models, Reinforcement Learning (RL) approaches, and Transfer Learning (TL) ap-
proaches, to provide an overview to researchers who wish to explore this field of research. Deep sequence-to-sequence models 
implemented using encoder-decoder architectures have shown promising results. Significant improvements have been made using 
architectures based on reinforcement learning and transfer learning, particularly through the use of universal representations learned 
by various Transformer-based PTLMs. Currently, abstractive ATS research focuses on finding the most effective and appropriate PTLM 
(s) and how to efficiently adapt their pre-trained global representations to further improve the quality of summaries and bring them 
closer to human levels of summarization. Overall, for short document abstractive ATS models, SimCLS and CIT models dominate all 
other models. On the other hand, LSH+HEPOS and BigBird-PEGASUS are the top-performing models for long-document abstractive 
ATS. 
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