Neurocomputing 482 (2022) 60-72

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

ACORT: A compact object relation transformer for parameter efficient N

image captioning

Check for
updates

Jia Huei Tan?, Ying Hua Tan?, Chee Seng Chan®*, Joon Huang Chuah”

2 CISiP, Faculty of Computer Science and Information Technology, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

b Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

ARTICLE INFO ABSTRACT

Article history:

Received 20 May 2021

Revised 21 December 2021
Accepted 23 January 2022
Available online 29 January 2022
Communicated by Zidong Wang

Recent research that applies Transformer-based architectures to image captioning has resulted in state-
of-the-art image captioning performance, capitalising on the success of Transformers on natural language
tasks. Unfortunately, though these models work well, one major flaw is their large model sizes. To this
end, we present three parameter reduction methods for image captioning Transformers: Radix
Encoding, cross-layer parameter sharing, and attention parameter sharing. By combining these methods,

our proposed ACORT models have 3.7x to 21.6x fewer parameters than the baseline model without com-
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promising test performance. Results on the MS-COCO dataset demonstrate that our ACORT models are
competitive against baselines and SOTA approaches, with CIDEr score >126. Finally, we present qualita-
tive results and ablation studies to demonstrate the efficacy of the proposed changes further. Code and
pre-trained models are publicly available at https://github.com/jiahuei/sparse-image-captioning.
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1. Introduction

Recent years have seen stunning advances in the performance
of Deep Neural Networks (DNNs) on sequence modelling tasks,
particularly natural language processing, understanding, and gen-
eration. One of the main drivers behind these successes is the
Transformer model [1], which forgoes recurrence in favour of a
fully-attentional feed-forward architecture. Besides enabling par-
allelisation through time during training, Transformers with their
residual connections can be stacked to form a multi-layer model.
By increasing model depth and width, more powerful models can
be trained, and task performance can be improved [2].

Riding on the successes of Transformers, recent research
extending Transformer-based architectures to image captioning
have resulted in state-of-the-art (SOTA) captioning performance
[3,4]. Notably, the Object Relation Transformer (ORT) [3] model,
which combines the Faster R-CNN detector network from [5] with
a pair of Transformer-based encoder and decoder, improves the
SOTA performance by 8 CIDEr!' score. This is then further improved
by [4] with the Meshed-Memory Transformer.
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Unfortunately, whilst these models provide good perfor-
mance, one main shortcoming is their large model sizes. For
example on MS-COCO [6], the Soft-Attention model [7] has only
11.9 M parameters, whereas the ORT model has 55.4 M parame-
ters (a 4.7x increase). Furthermore, as the size of datasets grows
larger, the vocabulary size increases as well, leading to large
input and output embedding matrices which further exacerbates
parameter inefficiency. This can impede real-time applications
deployment in resource-constrained devices such as mobile and
embedded devices. Moreover, large models also consume more
memory during training and inference, reducing overall effi-
ciency due to the communication overhead incurred. Finally,
recent works on natural language modelling, generation and
understanding also suggests that Transformer models are over-
parameterised [8,9], a trend that is shared among other DNN
models [10].

To this end, we address the aforementioned problems in this
paper by introducing ACORT - A Compact Object Relation Trans-
former architecture for parameter efficient image captioning. By
incorporating three parameter reduction methods, ACORT models
can achieve performances that are on par with the standard ORT
model but with significantly fewer parameters. Firstly, Radix
Encoding [11] is utilised to drastically reduce the size of the
embedding matrices, allowing vocabulary size to grow without
affecting model compactness. Secondly, cross-layer parameter
sharing is used to decouple the strong correspondence between
model depth and model size, allowing more layers to be stacked
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without increasing parameter count and vice versa. Thirdly, atten-
tion parameter sharing is utilised to reduce the parameter count of
the multi-head attention module, thereby further improving over-
all parameter efficiency (see Fig. 1).

As a result of these optimisations, an ACORT model with the
same configuration as ORT has 3.7x fewer parameters yet has
slightly better performance, while the smallest ACORT model has
21.6x fewer parameters with minimal performance degradation.
In summary, the core contributions of this work are twofold.
Firstly, we propose ACORT, A Compact ORT model with reduced
vocabulary size and parameter count (up to 13x smaller). Sec-
ondly, we demonstrate the effectiveness of ACORT on the MS-
COCO [6] dataset. Our experiments show that even the smallest
ACORT configuration can reach a CIDEr score >126, which is com-
parable to many SOTA approaches (see Section 5.3).

2. Related Works
2.1. Image Captioning

Image captioning is the task of generating descriptive captions
given an image. It is a problem that requires scene understanding
and natural language generation capabilities. While early works
relied on hand-designed templates and rule-based systems, recent
works have seen consistent performance improvements driven by
the use of DNNs. Here we discuss several notable related works;
see [12,13] for surveys.

The end-to-end differentiable encoder-decoder architecture
that directly generates a caption given an image was popularised
by [14,15], and inspired many later works [16,17]. Subsequently,
attention was utilised to condition the caption generation process
on salient visual features from the image encoder [18,19]. Attri-
butes have also been used to inject semantic information into
the caption generation process [20,21]. Following that, [5] used
an object detector as a form of hard-attention to generate image
features from bounding boxes. This framework was then extended
by replacing the Long-Short Term Memory (LSTM) decoder with
Transformers [1]. Such works include [22,23,4,24], and ORT [3],
which is the baseline used in this work. More details on ORT are
given in Section 3. At the same time, much work has gone into
reinforcement learning, which has enabled the use of non-
differentiable caption metrics as optimisation objectives [25,26].
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Fig. 1. The proposed ACORT models can achieve competitive CIDEr scores on MS-
COCO against baseline and state-of-the-art models despite having 3.7x to 13.2x
fewer parameters. See Table 5 for details.
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While these methods have been effective in improving SOTA test
performance, there has been comparatively little effort put into
reducing model size, which is the primary motivation for this
paper.

2.2. Parameter Efficient Transformers

Parameter sharing techniques have been utilised to great effect
on various Transformer architectures.

[27] proposed the Universal Transformer, which performs
recurrent stacking of layers, effectively performing cross-layer
sharing. Such recurrent stacking is also used by RSNMT [8]. [28]
suggested deep sequence models produce hidden activations that
converge towards some fixed point, and thus proposed the DEQ
model that finds these equilibrium points via root-finding to form
an infinite depth, weight-tied feedforward network. Subsequently,
[29] proposed the ALBERT model, a lightweight Transformer model
with cross-layer parameter sharing for pretraining and finetuning
on natural language understanding tasks. Motivated by AIBERT,
[30] employed low-rank approximation of Transformer weights
via singular value decomposition for video representation learning.
More works utilising cross-layer sharing include [31,32]. Going a
step further, [33] performed model-level sharing in which the
encoder and the decoder of the Transformer translation
model share the same set of weights. In a similar fashion, the
Levenshtein Transformer [34] shares the Transformer backbone
of three policy classifiers for natural language generation and
refinement tasks.

Attention parameter sharing methods were also applied to
Transformers. [35] shares the self-attention probability maps and
the cross-attention outputs across adjacent Transformer layers.
[36] proposed the Reformer, which utilised query-key weight shar-
ing to enable the use of locality-sensitive hashing for attention
computation.

Despite their remarkable effectiveness, weight sharing strate-
gies have remained largely unexplored for image captioning Trans-
former models. To this end, we investigate the performance of two
different sharing strategies on image captioning, namely cross-
layer sharing and attention parameter sharing.

2.3. Neural Architecture Search, Network Pruning, Quantisation

Methods based on Neural Architecture Search (NAS) have been
applied to automatically search for compact architectures that out-
perform human-designed architectures on performance and effi-
ciency [37,38]. A notable example is the NASNet architecture for
image classification, which achieves SOTA accuracy across differ-
ent levels of computational cost [39]. However, these works have
yet to include parameter sharing into their design space. Further-
more, such methods usually involve optimising a separate con-
troller network using reinforcement learning which complicates
the training procedure [40,41].

On the other hand, techniques such as network pruning, quan-
tisation and distillation can also be used to effectively reduce the
number of network parameters [42,43]. While these methods have
been used to compress Transformers [44-46], they are orthogonal
to this work. In principle, these techniques can be applied on top of
our proposed compact model to achieve further parameter and
disk space savings.

2.4. Parameter Efficient Image Captioning

[47] designed a compact image captioning network which com-
bined SqueezeNet [48] and LightRNN [49] in a Soft-Attention [7]
framework. By using LightRNN with factorised word embeddings,
the size of the model is reduced substantially. Meanwhile, [11]
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proposed the COMIC model, which utilised Radix Encoding, down-
projections with weight sharing and multi-head attention to
improve the parameter efficiency of Soft-Attention. In the work,
Radix Encoding is used to factorise token embeddings across time
steps, while weight-tied down-projections are used to reduce the
model size further. [50] proposed the H-LSTM cell, which adds
extra hidden layers to the vanilla LSTM cell. By doing so, H-LSTM
can reduce the number of parameters by requiring fewer external
stacked layers. However, their work derives the majority of param-
eter reduction from the use of the grow-and-prune method [51]
rather than architectural modifications. Finally, [52] proposed the
SublCap model, which uses SentencePiece tokenisation [53]
instead of word-level tokenisation. Since SentencePiece performs
subword segmentation, its vocabulary size can be made smaller,
thus reducing model size.

In this paper, we focus on reducing the number of parameters in
Transformers for image captioning. Similar to [52], the ORT archi-
tecture is chosen as the basis of our work. However, while [52] only
targets the embedding matrices for parameter reduction, our
methods perform weight reduction across the entire Transformer.
As a result, our proposed models have significantly fewer parame-
ters with comparable test performance. Performance comparisons
are given in Section 5.2 and 5.3.

3. Object Relation Transformer: Revisited

Since our proposed ACORT model builds on the Object Relation
Transformer (ORT) architecture proposed by Herdade et al. [3], we
present a brief introduction of the ORT model before moving on
to our ACORT model. Fig. 2 shows an overview of ORT.

The ORT model is an encoder-decoder architecture that extends
the Up-Down model of [5]. The key innovation is the use of geo-
metric attention rather than traditional soft-attention to incorpo-
rate spatial relationships between the detected objects into
attention weights. The geometric attention module operates by
multiplying the standard attention weights between two objects
with a learned function of their relative location and scale. These
geometric relations are encoded in the form of a spatial coordinate
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displacement vector along with width and height ratios between
the objects.

Moreover, rather than just combining the Faster R-CNN detector
network with an LSTM decoder, ORT employs an additional
Transformer-based encoder network on top of the detector. The
encoder is a 6-layer Transformer network. The R-CNN generated
image feature vectors are fed into the encoder Transformer, but
they are down-projected from 2,048 channels to 512 channels to
fit the Transformer network’s dimensionality. Embedded image
features are then transformed by a sequence of multi-head scaled
dot-product self-attention, multi-layer perceptron (MLP) with
RelLU, and layer normalisation [56] layers with residual connec-
tions [57] inside the Transformer. These transformed features are
then fed into the Transformer decoder’s cross-attention module.

The decoder is similar to the encoder, but there are three main
differences. First, the decoder’s multi-head self-attention performs
masked self-attention in order to achieve auto-regressive mod-
elling. Second, the Transformer decoder conducts multi-head
cross-attention between the encoder and the decoder in addition
to multi-head self-attention. This cross-attention module receives
the encoder output features and outputs a convex combination of
the features as context vectors. Finally, positional embeddings are
used to insert information about the relative positions of the token
embeddings that the Transformer decoder receives as input.

4. ACORT: A Compact Object Relation Transformer

In this section, we present the overall design of ACORT and
explain the reasoning behind the components used in ACORT.
Quantitative and qualitative comparisons against the standard
ORT baseline as well as SOTA approaches are provided in Section 5.

4.1. Radix Encoding

The original ORT formulation uses a standard architecture
whereby a word embedding matrix is used to generate the embed-
ding vector as model input, with a separate output projection
matrix used to generate a probability distribution over all the out-
put tokens. On a moderately-sized dataset such as MS-COCO [6],
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Fig. 2. Overview of the Object Relation Transformer (ORT) architecture [3]. Each blue box represents a single Transformer layer. Here, the output embedding layer is also

known as the logit or pre-softmax projection layer [54]. Figure adapted from [5,55].
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the use of word-level tokenisation scheme generates a large vocab-
ulary size and inflated embedding matrices. Typically, these
embeddings matrices have sizes that grow in lockstep with the size
of the datasets used to train the models. This is due to the fact that
that distribution of words in natural language usually follows a
Zipfian distribution [58].

To this end, Radix Encoding was proposed in [11] as a way to
sidestep the aforementioned issue. The method operates by repre-

senting each token index i as a combination of indices i. Techni-

cally, the encoded indices i for regular tokens can be computed
following Eq. (1)-(3) below. The word indices are assigned based
on word frequency, such that the most common word is assigned
to the first index and the least common word is assigned to the last
index.

i/v|modv forje{0,...b,d—1}andi ¢ {igos,iros},

fori = 1'3057

(1)
(2)
3)

where v is the Radix base, and |-| denotes the floor(-) operator con-
verting floating-point values to the nearest integer that is less than
or equal to the input. The process is illustrated in Fig. 3. The pseu-
docode for Radix Encoding is given in Algorithm 1.

Following the equations, token-splitting is performed on all the
tokens in the vocabulary, except for the two special tokens: the
<B0S> symbol to start the caption generation process, and the
< E0S> symbol to signal the end of the generation process. Doing
so allows the original vocabulary V, of size v to be compactly
encoded into a new vocabulary V. of size v + 2, where d is the
number of Radix tokens required to encode each original token.
Note that d and v are inversely proportional to each other, where
for a given vocabulary size |V,|, a smaller Radix base v will lead
to a larger d. In practice, d = 2 is able to provide good performance
while maintaining model compactness.

By employing the encoding scheme on top of the word-level
tokenisation, we can compress the original embedding matrices
from a size of »? x r to (v 4+ 2) x r. This leads to an exponential
reduction in embedding sizes at a factor of d, in which
|Ve| < |V,|. There is also no need to alter model code as one can
simply run inference using greedy or beam search (or other infer-
ence methods) as usual and apply post-processing on the output
tokens.

lj:

I
=0
v

+1 fori= i5057

Algorithm1: Radix Encoding

Input: Training corpus D, Radix base v

Output:Word-to-radix mapping V,

count « List of words and its corresponding frequency in D

count «+ Sort count by word frequency in descending order
Vo, < Assign an index to each word in count =The original
word vocabulary

V. «— Empty dictionary =The Radix vocabulary

for each(word, i) in V,do

Compute (i};, . b,i;-) from i and v using Eq. (1)
Ve[word] — (i, ...b,i))

end

Ve[BOS] — v =Refer to Eq. (2)
V.[EOS] — v+ 1 =Refer to Eq. (3)
returnV,
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4.2. Cross-Layer Sharing

In addition to Radix Encoding, cross-layer sharing is utilised as
another effective method for parameter reduction in ACORT. A
Transformer with cross-layer sharing applied will have a subset
or all of its layers share parameters. In the case where the number
of layers is larger than the number of independent layers, this can
lead to significant parameter reductions. For clarity, the layer con-
figurations are denoted as follows: A 6-layer Transformer with 3
independent layers (i.e. 3 layers shared across 2 layers each) is
denoted as (0,0,1,1,2,2), a 6-layer Transformer with 2 indepen-
dent layers is denoted as (0,0,0,1,1,1) or (0x3,1x3), and a 2-
layer Transformer with 2 independent layers is denoted as
(0,1). These configurations are illustrated in Fig. 4.

As outlined in Section 2.2, there are many ways to share Trans-
former parameters across its layers. A notable example is the
ALBERT model, which shares all parameters across its layers [29].
This means that a 6-layer ALBERT will have a layer-sharing config-
uration of (0x6). While this aggressive sharing scheme yields a
model that is very lightweight, it is not the ideal configuration
for image captioning (see Table 7).

In this paper, we explore the application of cross-layer sharing
in a group-wise fashion, such that there is more than one indepen-
dent layer in the Transformer. Specifically, we tested various layer-
sharing configurations with the number of independent layers
ranging from one to five. Empirical result in Section 5.5 shows that
a model with two independent layers can provide good perfor-
mance and parameter count reduction.

4.3. Attention Parameter Sharing

While cross-layer sharing is an effective inter-layer parameter
sharing strategy, further weight savings can be derived by leverag-
ing intra-layer parameter sharing. Specifically, each of the multi-
head scaled dot-product attention modules in a Transformer layer
contains three weight matrices Wq, Wi, Wy that can be potentially
shared. Fig. 5 shows two types of parameter sharing scheme
explored in this paper: Share-kV and Share-QK.

In a nutshell, Share-QK operates by sharing the parameters of
the weight matrices Wo and Wy. Likewise, Share-kV performs
parameter sharing on the weight matrices Wy and Wy. In addition
to reducing learnable parameters, these weight sharing schemes
can reduce computation cost by allowing some linear projection
operations to be skipped. This is achieved by reusing the output
from the shared intermediate projection layer, illustrated in Fig. 6.

In self-attention, all three inputs to the attention module -
query, key, value - originates from the same source tensor. In other
words, the inputs to self-attention are identical among each other
(Q =K = V). Thus for self-attention, both Share-QK and Share-kV
allow for intermediate projection reuse. However, this is not the
case for cross-attention where query comes from the decoder
while key and value come from the encoder. Hence for cross-
attention, only Share-kV is able to skip the computation of value
projection by directly reusing the projected key (key-value reuse).

4.4. Final Proposed Setup

Our proposed model ACORT incorporates all of the aforemen-
tioned parameter reduction strategies, namely Radix Encoding,
cross-layer parameter sharing, and attention parameter sharing.
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Original Vocabulary

Radix Encoding, v = 25
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Radix Encoding, v = 256

a = 0 a — 0
on — 1 on =P 0
towing ==p 2024 towing = =—p 3
star =P 2025 star —p 3
<EO0S> ==p 9960 <EQS> =) 26

0 0 a —p 0 0

0 1 on = 0 1

5 24 towing =) 7 232

6 0 star = 7 233
<EQS> =) 257

Fig. 3. Example of original vocabulary mapping (left), encoded Radix base-25 vocabulary (middle) and encoded Radix base-256 vocabulary (right).
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Fig. 4. Example configurations of cross-layer sharing in a Transformer. (0,0,1,1,2,2) means that there are 6 layers in total and sharing is applied every two layers.
(0x3,1x3) is similar except sharing is applied every three layers. (0,1) means that there are 2 layers in total and no sharing is applied.

The differences in model size and setup compared to the standard
ORT baseline are presented in Table 1.

Radix Encoding: ACORT utilises a base number of v = 768,
which provided a good balance of performance and parameter effi-
ciency (see Section 5.3). Other Radix base values are also explored
in Table 6, from v = 256 up to v = 1024.

Cross-layer sharing: ACORT uses (0x3,1x3) layer-sharing for
the -base and -small configurations. For the -xsmall configuration,
(0x2) layer-sharing is used to yield maximum parameter reduc-
tion. We also evaluated the performance of an ALBERT style
layer-sharing scheme (0x6), denoted as the ACORT-base-AL con-
figuration. Table 9.

Attention parameter sharing: ACORT uses Share-kV as the
attention parameter sharing method, as it shows good perfor-
mance compared to both Share-QK and the baseline (see Table 10).
Moreover, it has the slight advantage of allowing key-value reuse
for both self-attention and cross-attention.

As a result of these optimisations, the ACORT-base configura-
tion has 3.7x fewer parameters than that of ORT-base (55.4 M —
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15.0 M). The ACORT-small configuration has 13.2x fewer parame-
ters than ORT-base (55.4 M — 4.2 M), and 4.0x fewer parameters
than ORT-small (16.7 M — 4.2 M). The smallest ACORT configura-
tion has 21.6x fewer parameters than ORT-base (55.44M —
2.57 M), yet it is able to reach a CIDEr score of 126, which is com-
parable to many SOTA approaches (see Section 5.3). Meanwhile,
even though the ORT -small and -xsmall configurations are com-
pact, their performances are less ideal.

In terms of baseline models, both the -small and -xsmall config-
urations have the same number of layers as the -base model, but
with narrower layers. In addition, we also included the -base-2
and -base-4 configurations with the same width as the -base model,
but with fewer layers. Performance comparison between baselines
and ACORT is given in Section 5.2.

5. Experiments

In this section, we present empirical results on the performance
of our ACORT model, and provide comparisons against both base-
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Fig. 5. Example of attention parameter sharing. No-Share is the standard baseline attention. Share-kV shares Wy and Wy, while Share-QK shares W, and W.
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Fig. 6. When attention parameter sharing is used, some projection computations can be skipped by reusing the output of the shared projection layer.

Table 1
The configurations of the ORT and ACORT models, unless otherwise stated.
Approach Params (M) Radix base v Layer config Att. param sharing Hidden size MLP size
ORT (baseline) base 55.4 512 2,048
small 16.7 - (0,1,2,3,4,5) No-Share 256 1,024
xsmall 4.1 104 416
base-4 40.7 - 0,1,2,3) No-Share 512 2,048
base-2 26.0 0, 1)
ACORT base 15.0 768 (0x3, 1x3) Share-kV 512 2,048
base-AL 8.4 (0x6)
small 4.2 768 (0x3, 1x3) Share-kV 256 1,024
xsmall 2.6 (0x2)

line and SOTA approaches. We also provide extensive ablation
studies on the contribution of each component in ACORT.

5.1. Experiment Setup

Our experiment setup closely follows ORT [3] to allow for
meaningful quantitative comparisons.

Implementation and hyperparameters: We reuse the public
implementations published by the authors? for both ACORT and

2 https://github.com/yahoo/object_relation_transformer

65

baseline models. Following [3], Adam is utilised as the optimiser,
with the “Noam” learning rate scheduler for cross-entropy training
and the step learning rate schedule for SCST training [25].

Our SCST training utilised the recently proposed method by
[4,59] for performing action space sampling and computing the
reward baseline. Random search is used to generate multiple sam-
pled captions for each image, and the baseline for each image is set
to be the average of the caption scores.

Inference is performed using beam search without length nor-
malisation, using the model checkpoint with the highest validation
CIDEr score. Following [3], test set performance is obtained using
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Table 2
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Test set performance comparison against the baseline ORT models. ACORT models provide competitive test performance with significantly fewer parameters when compared to

baseline models.

Approach Params (M) MS-COCO test scores
B-1 B-4 M R C S
ORT (baseline) base 55.4 76.1 35.2 279 56.5 114.7 21.0
base-4 40.7 76.4 353 27.8 56.4 114.0 21.1
base-2 26.0 76.7 359 27.8 56.6 114.8 21.2
small 16.7 76.1 35.1 27.5 56.2 113.0 20.6
xsmall 4.1 749 32.7 26.2 54.9 104.4 191
ACORT base 15.0 76.6 359 28.1 56.9 116.0 214
base-AL 8.4 75.6 338 27.2 55.7 110.0 20.8
small 4.2 76.0 34.6 274 56.0 112.5 20.7
xsmall 2.6 751 33.7 271 55.6 108.7 203
Table 3 on BLEU-4, 1.9% on CIDEr, and 1.4% on SPICE. When compared to

Uniqueness and average length of the generated captions on MS-COCO. Captions
generated by ACORT contain 2.0% to 4.6% more unseen sentences that are ~0.2 words
longer.

Approach Unique (%) @ Average word count
ORT (baseline) base 61.2 9.52
base-4 60.1 9.44
base-2 60.6 9.38
small 60.4 9.39
xsmall 57.6 9.23
ACORT base 63.2 9.59
base-AL 71.7 9.73
small 62.2 9.44
xsmall 62.8 9.53

“Percentage of generated captions not found in training set.

beam size of 2 after cross-entropy optimisation; and beam size of 5
after SCST optimisation.

Datasets and metrics: Experiments are performed on MS-COCO
[6], a popular English captioning dataset for benchmarking. The
“Karpathy” split [14] is utilised, which assigns 5,000 images for
validation, 5,000 for testing and the rest for training. Pre-
processing of captions is done following [11]. Evaluation scores
are obtained using the publicly available MS-COCO evaluation
toolkit>, which computes BLEU, METEOR, ROUGE-L, CIDEr and SPICE
(B,M,R,C,S).

5.2. Baseline Comparison

5.2.1. Test performance

Table 2 shows the comparison between model size and the met-
ric scores of our model against the baseline after cross-entropy
(teacher-forcing) training. The configurations presented here are
detailed in Section 4.4.

Overall, the performance of ACORT is on par with the various
baseline configurations. Comparing the -base configurations, our
ACORT-base model is able to slightly outperform ORT-base, ORT-
base-4 and ORT-base-2 models, despite having 42% to 73% fewer
parameters. It achieves relative improvements of 2.0% on BLEU-4,
1.1% on CIDEr, and 1.9% on SPICE compared to ORT-base. Interest-
ingly, ORT-base-2 outperforms both ORT-base and ORT-base-4,
suggesting that the original configuration might be overparame-
terised and could benefit from the regularisation effects of simply
having fewer parameters.

In addition, ACORT-small can provide competitive test perfor-
mance even with a large 92.4% reduction in parameter count
(13x). Compared to ORT-base, its scores dropped by merely 1.7%

3 https://github.com/salaniz/pycocoevalcap
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ORT-xsmall with a similar parameter count, ACORT-small clearly
outperforms it, with relative improvements of 5.4% on BLEU-4,
4.3% on CIDEr, and 1.9% on SPICE. At the same time, ACORT-
xsmall with only 2.6 M parameters (38.0% reduction) also outper-
forms ORT-xsmall. While a considerable score gap exists between
ACORT-xsmall and ORT-base, the CIDEr gap can be reduced signif-
icantly through the SCST training procedure (see Section 5.3). On
the other hand, ACORT-base-AL with only one independent layer
underperforms compared to both ACORT-base and ACORT-small,
with score gaps of —2.3% on BLEU-4, —2.2% on CIDEr, and +0.5%
on SPICE compared to ACORT-small.

One notable observation from our experiments is the training
instability of the ORT-xsmall configuration. The model tends to
diverge during training, and we had to repeat its training run twice
to get a model that did not diverge early in the process. Other than
that, all the other configurations had stable training runs, including
the ACORT models.

5.2.2. Caption uniqueness and length

To further assess the quality of captions generated by the mod-
els, we calculated the captions’ uniqueness and average word
count. Results are given in Table 3. Once again, the ACORT models
were able to produce good performance. In terms of both caption
uniqueness and length, ACORT is able to outperform the baselines.
ACORT-generated captions contain 1.0% to 14.1% more unseen sen-
tences, and the average lengths are around 0.2 words longer.

5.2.3. Training and inference cost

We examine the training and inference costs of our ACORT
models as well as the baseline models. We measured the GPU
memory required for the training process using figures reported
by torch.cuda.memory_reserved() at the end of the first 1,000 train-
ing steps. Similarly, the training speedups were computed based
on the time taken to perform the first 1,000 model updates. Infer-
ence speedups were calculated based on the time taken to generate
captions on the entire test set with a batch size of 50 and a beam
size of 2, following the setup described in Section 5.1. All results
were obtained using a Titan Xp GPU.

Table 4 shows that the ACORT models consume less GPU mem-
ory during training due to their lower parameter counts. This is
especially true for ACORT-xsmall, which is both extremely com-
pact with 2.6 M parameters and lightweight with only 2 layers in
total. These are also reflected in the training speedups enjoyed
by the ACORT models, with speedups ranging from 1.2x to 4.3 x.
In terms of inference speeds, the ACORT models suffered slightly
at 0.8 x speedup compared to the baselines. This can be attributed
to the increased sequence length incurred by the use of Radix
Encoding. Further discussion is provided in Section 6. However,
we note that our ACORT-xsmall model can still provide a 1.2x
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Table 4

Training and inference cost comparison against the baseline ORT models. ACORT models consume less GPU memory during training with 20% to 432% faster training speeds
compared to ORT-base.

Approach Params (M) GPU Memory () Relative Speedup (1)
GB Relative Training Inference
ORT (baseline) base 55.4 2.54 1.0x 1.0x 1.0x
base-4 40.7 2.00 0.8x 1.4x 1.1x
base-2 26.0 1.22 0.5x 2.5x 1.3x
small 16.7 1.53 0.6x 1.1x 0.9x
xsmall 4.1 0.87 0.3x 1.1x 0.9x
ACORT base 15.0 2.36 0.9x 1.2x 0.8x
base-AL 8.4 2.29 0.9x 1.3x 1.1x
small 4.2 1.50 0.6x 1.4x 0.8x
xsmall 2.6 0.57 0.2x 4.3x 1.2x
Table 5

Test set performance of the proposed model ACORT along with SOTA methods on MS-COCO. ACORT models provide good performance-to-size ratio, with parameter reductions of
up to 18x when compared to SublCap-1 k.

Approach Params (M) * MS-COCO test scores (single-model)
B-1 B-2 B-3 B-4 M R C S
Att2all [25] 463" - - - 34.2 26.7 55.7 114.0 -
UD [5] 5320 79.8 - - 36.3 27.7 56.9 120.1 214
ORT [3] 55.4 P 80.5 - - 38.6 28.7 58.4 128.3 22.6
AoANet [18] - 80.2 - - 38.9 29.2 58.8 129.8 224
M2 [4] - 80.8 - - 39.1 29.2 58.6 131.2 22.6
X-Transformer [19] - 80.9 65.8 51.5 39.7 29.5 59.1 132.8 234
LightRNN [47] € 11.8 67.5 46.5 32.1 22.6 22.0 - - -
H-LSTM [50] ¢ - 719 - - - - - 95.4 -
ComlIC-256 [11] 4.0 75.3 - - 344 - - 105.0 19.0
SublCap-1 k [52] 46.3 79.5 - - 37.1 29.8 58.2 123.2 23.0
ACORT base 15.0 79.3 64.1 49.9 38.2 28.4 57.8 127.8 21.6
small 4.2 79.7 64.4 50.2 38.5 28.1 57.6 126.9 213
xsmall 2.6 79.0 63.5 49.3 37.7 28.0 57.3 126.0 21.2
2Excluding image encoder. "Calculated based on reimplementation. Teacher-forcing training only.
Table 6
The effect of different Radix Encoding bases. Overall, Radix Encoding with v = 768 provides good performance while maintaining embedding compactness.
Radix base v Params (M) MS-COCO validation scores
Embeddings Total B-1 B-4 M R C S
Word (baseline) 10.3 55.4 75.5 33.9 27.6 56.2 111.0 20.6
1,024 1.1 46.2 75.1 33.8 27.8 56.3 111.9 20.8
768 0.8 46.0 75.2 333 27.7 55.9 111.7 20.8
512 0.5 45.7 74.9 33.6 27.9 56.2 111.9 20.7
256 0.3 45.5 75.2 333 27.6 56.1 110.6 20.6

Table 7

The effects of varying numbers of independently parameterised layers applied to both the encoder and the decoder. Configuration (0x3,1x3) achieves the closest metric scores
when compared to the baseline model while remaining reasonably compact.

# independent layers Layer share config Params (M) MS-COCO validation scores
B-1 B-4 M R C S

6 (baseline) (0,1,2,3,4,5) 55.4 75.5 339 27.6 56.2 111.0 20.6

4 (0,0,0,1,2,3) 40.7 75.9 335 27.4 55.8 110.6 20.6

3 (successive) (0,0,1,1,2,2) 334 75.9 339 27.5 56.2 111.0 20.5

3 (symmetric) (0,1,2,2,1,0) 334 75.8 333 27.0 55.6 110.5 203

2 (0x3, 1x3) 26.0 76.1 33.7 27.1 55.8 1109 204

1 (0x6) 18.7 76.2 334 26.9 55.6 109.4 20.2

inference speedup compared to ORT-base, with minimal perfor-
mance degradation after SCST optimisation is completed (see
Table 5).

All in all, these results show that the proposed modifications are
effective at reducing model parameter count while maintaining
test performance.

5.3. State-of-the-Art Comparison

Table 5 demonstrates the test set performance of ACORT
models compared to state-of-the-art approaches. The compact
image captioning models are separated into the second group in
the table.
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Table 8
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The performance of networks with only 2 independent layers but with varying degree of layer reuse. The 6-layer model with (0x3,1x3) configuration provides the best

performance relative to the baseline.

# layers Layer share config Params (M) MS-COCO validation scores
B-1 B-4 M R C S
6 (baseline) (0,1,2,3,4,5) 554 75.5 339 27.6 56.2 111.0 20.6
2 (2 ind.) (0, 1) 26.0 75.6 33.7 273 55.9 110.5 20.5
6 (2 ind.) (0x3, 1x3) 26.0 76.1 33.7 271 55.8 1109 20.4
12 (2 ind.) (0x6, 1x6) 26.0 75.9 334 26.9 55.7 108.9 20.2
Table 9

The effects of applying cross-layer sharing to encoder only, decoder only, or both. Sharing both the encoder and the decoder provides the most parameter reduction while

maintaining performance.

# independent layers Layer share config Params (M) MS-COCO validation scores
B-1 B-4 M R C S
Baseline (0,1,2,3,4,5) 55.4 75.5 339 27.6 56.2 111.0 20.6
Share encoder only (0x6) 39.7 75.4 33.6 274 56.1 110.0 20.5
Share decoder only (0x6) 344 75.8 33.5 26.9 55.6 109.0 20.4
Share both (0x6) 18.7 76.2 334 26.9 55.6 109.4 20.2
Table 10

The effect of different attention parameter sharing configurations. Since there seems to be no significant performance difference among the various configurations, Share-kV is

chosen to allow for key-value reuse.

Attention params sharing Params (M) MS-COCO validation scores
Attention Total B-1 B-4 M R C S
No-Share (baseline) 18.9 55.4 75.5 339 27.6 56.2 111.0 20.6
Share-kV (encoder) 17.3 53.9 75.6 339 275 56.1 111.0 20.4
Share-kV (decoder) 15.8 52.3 75.6 339 274 56.1 111.1 20.7
Share-kV 14.2 50.7 75.6 33.8 27.6 56.2 111.2 20.7
Share-QK 14.2 50.7 75.7 34.0 27.7 56.3 111.9 20.7

Compared to compact image captioning models, ACORT models
provide better performance while having smaller model sizes.
ACORT is able to outperform all of the existing approaches on most
metrics, with the lone exception of SubICap-1 k. By comparing
ACORT against COMIC-256, the performance improvements
derived from better image features (Faster R-CNN) and sequence
decoder (Transformer) are apparent: ACORT-xsmall achieves
+9.6% on BLEU-4, +20.0% on CIDEr, and +11.6% on SPICE. At the
same time, ACORT-xsmall is 36% smaller than COMIC-256
(1.47 M decrease in parameters).

Against the ORT-based SublCap-1 k, ACORT-base has 67.6%
fewer parameters (3x), ACORT-small has 90.9% fewer parameters
(11x), while ACORT-xsmall has 94.5% fewer parameters (18x).
Even with such large reductions in model sizes, ACORT is still able
to provide good performance. Specifically, ACORT-base achieves
+3.0% on BLEU-4 and +3.7% on CIDEr, ACORT-small achieves
+3.8% on BLEU-4 and +3.0% on CIDEr, whereas ACORT-xsmall
achieves +1.6% on BLEU-4 and +2.3% on CIDEr.

ACORT models are also competitive compared to standard SOTA
models. The smallest ACORT model mostly outperforms the UD
(Up-Down) model, with better scores on BLEU-4, METEOR, ROUGE
and CIDEr. Even compared with the best models — AoANet, M2, and
X-Transformer - all three ACORT models are able to produce com-
petitive metric scores considering their small parameter counts.

In short, ACORT models provide good performance-to-size
ratios, demonstrating the effectiveness of the proposed modifica-
tions outlined in Section 4.

5.4. Qualitative Results

In this section, we present some examples of the generated cap-
tions from ACORT along with the baseline ORT-base model. The
captions are generated on the validation set using a beam size of 5.

Fig. 7 showcases some images where the captions generated by
the ACORT models are accurate and descriptive relative to the ORT-
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base model. Despite their small sizes, both ACORT models still
managed to convey specific and relevant details regarding the
image content. For image (1), ACORT correctly described the action
of the player as “hitting the ball” rather than holding it. For image
(2), all the captions are accurate but ORT-base suffered from “bad
endings” due to SCST optimisation [60]. For image (3), the fence
was mentioned by ACORT but ignored by ORT-base. For image
(4), the number of motorcycles is correctly specified as one by
ACORT instead of two.

Fig. 8 showcases images where the captions generated by the
ACORT models contain mistakes relative to the ORT-base model.
This is to be expected, as the ACORT and baseline models have sim-
ilar metric scores. From the captions, the presence of bad endings
can again be seen. For image (1), even though the bus is correctly
described as being “blue and yellow” by ACORT, it is incorrectly
described as “driving down a street”; whereas the baseline caption
is more accurate. For image (2), ACORT is unable to provide
detailed descriptions of the elephants, compared to ORT-base
which mentioned both the adult and the baby. Similarly for image
(3) and (4), the baseline captions are more detailed, with mentions
of “a pile of books” and “a yellow bus”.

Overall, the captions generated by ACORT are still on par with
those generated by the baseline ORT model. This shows that cap-
tion quality is maintained despite the reductions in parameter
count.

5.5. Ablation Studies

In this section, we provide an extensive analysis of the design
choices and architectural modifications made to the baseline ORT
model [3]. By isolating each of the modifications and comparing
them to the baseline, their contribution towards the performance
and compactness of the final model ACORT can be better quanti-
fied. Unless stated otherwise, any parameter sharing configuration
or modification is applied to both the encoder and decoder. All the
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AT
A

a man standing on
a tennis court hold-
ing a ball

RT-base
a woman sitting at a brown bear sit-

two motorcycles
parked on the side
of a road

a man hitting a ten-
nis ball on a tennis
court

a motorcycle
parked on the side
of a road

a man hitting a ten-
nis ball on a tennis

a table with a birth-  ting in the grass
day cake with can-
dles on a

ACORT-base
a woman sitting at a brown bear sit-
a table with a birth- ting in the grass
day cake with can- next to a fence
dles

ACORT-small

a brown bear sit-
ting in the grass
next to a fence

a woman sitting at
a table with a cake
with candles

a motorcycle
parked on the side
of a road

a man hitting a ten-
nis ball on a tennis
court

ACORT-xsmall
a woman sitting in a brown bear sit-
front of a birthday ting in the grass in
cake with candles  a field

a motorcycle
parked on the side
of aroad

Fig. 7. Examples of images where the captions generated by the ACORT models are accurate and descriptive relative to the baseline.

a bus parked in a
parking lot at night

a yellow double
decker bus driving
down a street

a blue and yellow
bus driving down a
street

a double decker
bus driving down a
street

a bus driving down
a street at night

ORT-base

an adult elephant a cat sitting on top
and a baby ele- of apile of books
phant standing in a
field

ACORT-base
two elephants  a cat sitting on top
standing next to a  of a book
baby elephant in a
field

ACORT-small
two elephants  a cat sitting on top

standing in a field of a book on a

a double decker
bus driving down a
street

a bus parked in a
parking lot at night

ACORT-xsmall
two elephants and  a cat sitting on top
a baby elephant of a pile of books
standing in a field

a double decker
bus driving down a
street with

Fig. 8. Examples of images where the ACORT models made mistakes.
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Fig. 9. The root mean squared distance for all layer pairs in a standard 6-layer ORT model. Minimum distance in each plot is clipped at its second lowest value. In general, the
first layer is more distinct compared to the rest of the layers; layers 2 to 6 are closer to neighbouring layers.

metric scores presented in this section are obtained using greedy
decoding on the MS-COCO validation set.

5.5.1. Radix encoding

Table 6 demonstrates the validation performance and parame-
ter reductions that can be achieved using Radix Encoding. Across
the board from base of v =256 to v = 1024, the performance of
the models is comparable to that of the baseline. This result shows
that the Transformer model can effectively learn the strict depen-
dencies between tokens imposed by Radix Encoding, despite its
lack of recurrent connection.

Furthermore, the sizes of the embedding matrices are reduced
significantly up to 97.4% (10.3 M — 0.3 M). At the same time, the
performance degradation at the extreme end is merely 0.36% for
CIDEr (111.0 — 110.6). All in all, this result suggests that there
exists substantial redundancy in the embeddings matrices, which
can be removed without affecting overall performance [61,11].
The work of [58] also found that performing embedding factorisa-
tion along with weight sharing can lead to performance improve-
ments in language modelling.

5.5.2. Cross-layer sharing

Fix the number of layers, vary the number of independent
layers: Table 7 summarises the performance of baseline networks
with varying numbers of uniquely or independently parameterised
layers. Cross-layer sharing is able to drastically reduce the number
of parameters from 55.4 M to just 18.7 M, i.e. a 66.2% reduction.
Furthermore, the performance of the (0x6) model with just one
independent layer shared across 6 layers is still comparable to that
of baseline, with CIDEr score of 109.4 versus 111.0 and BLEU-1
score of 76.2 versus 75.5. In general, while the broad trend remains
that models with more parameters perform slightly better, the
parameter-performance trade-off is still favourable to layer-
shared models.

While Table 7 provides the performance data of various layer
sharing configurations, we seek to explain the reasons behind the
performance differences. To this end, we measured how the
parameter distribution of a layer differs from each other in the
baseline 6-layer ORT model. The results are given in Fig. 9,
obtained by performing L, normalisation on the last axis® of the
layer parameters, flattening and concatenating them, and computing
the pair-wise mean squared distance.

The figure shows that the first layer - which processes the input
embeddings - is more distinct compared to the rest of the layers.

4 Normalisation across first or all axes produce similar results.
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This largely supports the observation that sharing configurations
where the first layer is shared more (0,0,0,1,2,3) or shared with
the last layer (0,1,2,2,1,0) suffered from worse performance.
Configuration (0x6) also suffered from being the worst performer,
although that can be attributed in part to its lower parameter
count. In addition, the similarity data also show that layers 2 to
6 are closer to neighbouring layers. This suggests that configura-
tions where successive layers are shared will be more performant.
Indeed, configurations (0,0,1,1,2,2) and (0x3,1x3) achieve the
closest metric scores when compared to the baseline model.

Fix the number of independent layers, vary the number of
layers: Table 8 demonstrates the performance where the number
of independent layers is fixed but each layer is reused across vary-
ing numbers of layers in a recurrent fashion similar to [27]. Here,
all the layer-shared models have two independent layers. From
the results, even though all three models have very different com-
putation costs - from 2 layers (0,1) to 12 layers (0x6,1x6) - they
all end up with similar performance. This indicates that repeated
computation using the same layer is not an efficient use of com-
pute, with diminishing returns past 3 layer repetitions. Finally, it
can be noted that the 6-layer model with (0x3,1x3) configuration
provides the best performance relative to the baseline.

Apply layer sharing to encoder only, decoder only, or both:
Table 8 shows that applying layer sharing to the encoder only
while leaving the decoder intact produced less performance drop
compared to sharing the decoder across all metrics except BLEU-
1. Interestingly, applying layer sharing to both the encoder and
decoder did not seem to worsen overall performance when com-
pared to the decoder-only sharing scheme, with almost no dis-
cernible difference in terms of metric scores. However, the
number of parameters vastly favoured sharing both the encoder
and decoder, with the resulting network having 66% fewer param-
eters than the baseline. Overall, sharing both the encoder and the
decoder provides the best performance to parameter count trade-
off.

5.5.3. Attention parameter sharing

Table 10 shows the impact of various parameter sharing config-
urations. All the attention-shared models are performing surpris-
ingly well despite the reduction in attention parameters. This is
especially true for the Share-QK model, as it is able to outperform
the baseline model across all metrics. We hypothesise that this is
due to the increased regularisation from weight sharing. While
the Share-kV model performs slightly inferior to Share-QK, it has
a minor advantage in terms of compute cost (as mentioned in
Section 4.3). Finally, there seems to be no significant performance
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difference whether the sharing is applied to encoder only, decoder
only, or to both. It can be noted that sharing the decoder’s attention
parameters provides larger parameter reduction than the encoder,
as the decoder contains cross-attention layers absent from the
encoder.

6. Limitations and Future Work

One of the limitations of this work is the number of hyperpa-
rameters introduced. In particular, cross-layer parameter sharing
introduced a wide range of possible layer-sharing configurations.
While traversing all the possible hyperparameter combinations
can be expensive, we believe the comprehensive baseline compar-
ison and ablation study provided in Section 5.2 and 5.5 can miti-
gate this shortcoming partially. Alternatively, efficient
hyperparameter optimisation (HPO) methods [62,41] can be used
to further search the hyperparameter space. However, since this
work focuses on demonstrating the effectiveness of the proposed
parameter reduction techniques rather than pursuing raw perfor-
mance, we leave the use of HPO techniques to future work.

Besides that, the Radix Encoding method utilised performs
token factorisation across time steps, leading to longer sequence
lengths. In the future, we wish to incorporate additional neural
encoding layers to compress and consolidate tokens across time
steps. Alternatively, an ALBERT-style token factorisation could be
used. At the output layer, strategies such as [63] and CNN-
softmax [64] can be used to achieve model size reduction.

On the other hand, while the various parameter reduction tech-
niques presented in this work are only applied to a Transformer-
based model (ORT), all of them are in principle compatible with
other types of image captioning models. For example, cross-layer
parameter sharing can potentially be applied to a multi-layer
Recurrent Neural Network (RNN) decoder [5] in order to share
weights across the RNN layers. Such decoder can also be outfitted
with the Share-kV cross-attention module as described in Sec-
tion 4.3. Finally, Radix Encoding can and has been successfully used
together with an RNN-based model [11]. Similarly, models with
convolutional decoder [17] can employ cross-layer parameter
sharing to share weights across convolutional layers, while simul-
taneously utilising Share-kV cross-attention and Radix Encoding.
The exploration of these architectures is left as future work.

7. Conclusion

We have presented ACORT - A Compact Object Relation Trans-
former architecture for parameter efficient image captioning.
ACORT models can achieve performances that are on par with
the standard ORT model (CIDEr score >126) but with 3.7x to
21.6x fewer parameters. This is achieved via the incorporation of
three parameter reduction methods: Radix Encoding, cross-layer
parameter sharing, and attention parameter sharing. Our results
on the MS-COCO dataset demonstrates that the proposed ACORT-
base and ACORT-small models are capable of achieving metric
scores that are competitive against baselines and SOTA approaches.
Finally, qualitative results and ablation studies are also presented
to further demonstrate the effectiveness of the proposed modifica-
tions. Together with the public release of model code and pre-
trained checkpoints, we hope that these findings can spur research
interest in the image captioning community.
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