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Big data systems are sufficiently stable to store and process a massive volume of rapidly changing data.
However, big data systems are composed of large-scale hardware resources that make their subspecies
easily fail. Fault tolerance is the main property of such systems because it maintains availability, reliabil-
ity, and constant performance during faults. Achieving an efficient fault tolerance solution in a big data
system is challenging because fault tolerance must meet some constraints related to the system perfor-
mance and resource consumption. This study aims to provide a consistent understanding of fault toler-
ance in big data systems and highlights common challenges that hinder the improvement in fault
tolerance efficiency. The fault tolerance solutions applied by previous studies intended to address the
identified challenges are reviewed. The paper also presents a perceptive discussion of the findings
derived from previous studies and proposes a list of future directions to address the fault tolerance
challenges.

� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

Big data systems gain considerable attention from the research
community and the industry due to the growing volume and
importance of data [1]. Sources, such as Internet of Things sensors,
social media, and healthcare applications, increasingly generate
massive amounts of data. For example, the log production rate of
social media applications can reach several terabytes or petabytes
per day [2]. The International Data Corporation predicts that
approximately 163 zettabytes of data will emerge by 2025 [3]. Tra-
ditional Relational Database Management System (RDBMS), such
as MySQL [4], cannot handle the increased volume of data because
of hardware limitations on a single server. Data storage and pro-
cessing must be distributed on reliable servers to transfer massive
data into the desired form. The possibility of failures increases
when the number of servers increases [5]; thus, decision-makers
and developers regard fault tolerance as an important property of
big data systems because it enables a failure-free execution and
prevents the degradation of performance. Accordingly, popular
big data frameworks, such as MapReduce [6] and its open-source
implementation Apache Hadoop [7] have considered fault toler-
ance by offering various fault-tolerance approaches such as data
redundancy, checkpointing, and speculative execution that enables
resiliency against failures. However, they cannot always fulfil their
reliability [8] and performance requirements because failures
become a norm and are no longer exceptions in large-scale envi-
ronments [9].

Fault tolerance is defined as the property of a system that con-
tinues to operate even during faults [10,11]. Over the years, the
demand for achieving efficient fault-tolerant solutions has been
increasing [12–20] to improve the reliability and performance of
big data systems [21]. This demand corresponds to the increase
in the number of software and hardware failures caused by scala-
bility, complexity, and interdependency of the underlying environ-
ment resources. A large-scale cluster consisting of 1000 super
reliable servers with a mean time between failures of 30 years is
expected to have one failure per day [5]. More than 1000 individual
nodes and hard drive failures affect the cluster during its first year
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of service [22,23]. The recovery time of these failures can approx-
imately reach 2 days [24], and this condition extremely violates the
performance.

On this basis, an efficient fault-tolerant solution for big data
systems is necessary for achieving better availability, reliability,
and performance in the presence of faults. Consequently, a litera-
ture review is important to understand the mechanism by which
fault tolerance has been addressed in big data systems and to gain
an insight on challenges and recent solutions in this field towards
new promising research directions. To date, review articles con-
centrating on the challenges and solutions of fault tolerance in
big data systems have been scarce. To the best of our knowledge,
only Memishi et al. [25] focused on optimization mechanisms of
fault tolerance from 2004 to 2016 in the MapReduce systems.
The current work strives to review and examine the previous stud-
ies involving fault-tolerant solutions for big data systems for
addressing this gap. Specifically, this work focuses on the chal-
lenges faced by the previous researchers and their proposed solu-
tions to overcome the challenges.

The remainder of the paper is organised as follows. Section 2
provides an overview of big data systems including the data stor-
age and processing systems. Section 3 provides an overview of
fault types and fault tolerance approaches. Section 4 generally clas-
sifies the fault tolerance challenges and reviews the solutions
noted by the previous studies, while Section 5 discusses and ana-
lyzes the findings of the proposed solutions. Section 6 suggests
some future research directions in this area and our conclusion.

2. Big data systems

Big data includes data, data storage, data processing, data anal-
ysis, information management, interfaces, and visualization [26].
Among them, data storage and processing crucially require fault
tolerance as they manage the storage and computational resources
for big data applications. These resources are also vulnerably
exposed to failures.

2.1. Storage system

The existing storage technologies have been restricted to store
and manage data due to the vast volume of the generated data.
RDBMSs are traditionally used to manage structural data [27].
However, these systems cannot store and manage big data. A scal-
able and reliable storage architecture that can achieve high data
availability in a distributed manner is required to manage the huge
volume of data. Several storage systems, such as Google File Sys-
tem (GFS) [28], Hadoop Distributed File System (HDFS) [29] and
OpenStack Swift [30], have been proposed to handle the big data
storage challenges. These systems consist of distributed storage
devices connected through the network and support virtualisation,
distribution, and scalability to efficiently fit with a massive volume
of data. Distributed storage devices are typically a network with
attached storage and virtualisation ability [31]. Storage virtualisa-
tion is a technique that presents a logical view of the physical stor-
age resources as a signal storage pool. The network of the storage
devices is used to access the stored information despite their loca-
tions or modes. The storage system can have three file system
modes; namely, file storage, block storage, and object storage,
which are used in big data storage systems.

� File Storage: Data are organised hierarchically in files and the
storage system stores all the file information as metadata. The
files are reachable by determining the path to a specific file
stored in the metadata.
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� Block Storage: Data are divided into blocks, and each block holds
a part of the data. The storage system assigns a unique ID to
each block to allow application access and combine the blocks
by their IDs.

� Object Storage: Data are encapsulated with metadata in objects.
Each object has unique metadata with certain configurations,
such as geographical location, replica number, and protection
level.

O’Reilly [32] provided a further discussion on the advantages
and drawbacks of each file system mode. GFS and HDFS are the
widely used storage systems and a comparison between them is
presented by Verma and Pandey [33].

2.2. Processing system

With the massive increase in data and the advancement in big
data storage technologies for handling data storage and manage-
ment in distributed systems, big data processing systems have
been proposed to transform the massive amount of data into
usable and desirable forms to facilitate the development of scalable
solutions and algorithms. For example, data scientists use big data
processing systems for data-intensive text processing, assembly of
large genomes, machine learning and data mining, and large-scale
social network analysis. The widely used big data processing sys-
tems are Hadoop [7], Spark [34], Storm [35], Samza [36], and Flink
[37], and they are open-source projects under the Apache Software
Foundation [38]. These systems contain three main layers: pro-
cessing engine, cluster manager, and processing framework [39].

� Processing Engine: An abstraction that allows performing simple
computations whilst hiding the details of parallelisation, distri-
bution, load balancing, and enabling fault tolerance.

� Cluster Manager: A centralised service for maintaining the clus-
ter configuration. It ensures dynamic resource sharing and pro-
vides efficient resource management for distributed data
processing frameworks.

� Processing Framework: A framework that consists of a set of
tools that allows efficient analytics of a massive volume of data.
Such a framework can support several application program-
ming interfaces (APIs) to integrate other types of applications
and algorithms, such as scalable machine learning algorithms,
graph-parallel computation, and interactive analytics or
streaming,

Big data processing systems offer different features that can fit
in various big data use cases. For example, Hadoop supports batch
processing, and Storm and Samza support stream processing. By
contrast, Spark and Flink can be used for batch and streaming.
Batch processing is used when the data are collected or stored in
large files. The processing result, such as index generation from
documents for internet-scale search, is required when the process-
ing is completed. In the meantime, stream processing is used when
the data are continuous and must be rapidly processed, such as the
analysis of users’ Tweets posted on Twitter. Inoubli et al. [40] pro-
vided an experimental survey that includes a comparative study of
the respective big data processing systems.

3. Fault tolerance

3.1. Fault types

Fault, error, and failure are fundamental concepts in fault toler-
ance [41,42]. These concepts are due to different conditions that
could be either caused by software or hardware resources, and
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they have varied effects on the system behaviour. The relationship
among fault, error, and failure from the hardware to the software
level, and vice versa, is conceptually illustrated in Fig. 1. A fault
is an unusual hardware or software condition that produces an
error when the fault is active. An inactive fault refers to a condition
in which the fault does not produce an error because it is out of the
boundaries of the system functionality. Once an error is produced
by an active fault, the error leads to a deviation of the expected log-
ical value, which results in a failure. Failure means the inability of
the system to perform its intended function. Examples of frequent
fault sources are processor or memory damage, network overflow,
and corrupted storage devices. Mistakes in software specifications
or implementation and external misuses, such as unanticipated
inputs, can also generate faults in the system.

Faults can be generally classified into two types: permanent and
transient. A permanent fault, which is also called a fail-stop [43], is
continuous and remains for a fixed period. This type of fault is easy
to detect and is localised because the faulty component remains
unresponsive after a permanent fault occurs [44]. By contrast, a
transient fault, which is also known as a straggler [18] or a fail-
stutter [45], makes a system accessible but with a poor perfor-
mance [46]. The nature of the transient fault is slightly different
from that of a permanent fault because a transient fault occurs at
a random frequency; hence, it is more difficult to be detected than
the permanent ones.
3.2. Fault tolerance approaches

Fault tolerance is the property of a system that maintains con-
tinuous running of service even during faults. Fault-tolerant sys-
tems are built on two main key concepts: fault detection and
recovery [44]. These two concepts can be achieved based on vari-
ous fault-tolerance approaches as classified in Fig. 2.

Fault detection is the first building block in a fault-tolerant sys-
tem that enables detecting faults as soon as they manifest them-
selves within the system. Heartbeat detection and fault
prediction are stable fault detection approaches used in large-
scale systems. The heartbeat approach is designed based on an
explicit and periodic exchange of heartbeat messages between
two components during error-free periods [44]. A sample example
is as follows: if component A has not received the heartbeat mes-
sage from another associated component B within a specified time
frame, then A would declare that B has failed, and the fault-
tolerant systemwill be ready to apply a treatment action for recov-
ery. This approach has been implemented in numerous large-scale
systems such as HDFS, YARN, and Strom. A faulty component can
only be detected when it literally fails to send/receive heartbeat
messages. In contrast, detecting faults before they occur can be
Fig. 1. Relationship among fault, error, and failure from
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addressed with the fault prediction approach. Fault prediction pre-
dicts possible upcoming faults using a statistical model and histor-
ical information of previously executed workloads. The statistical
model is used to inspect the workload’s dependencies and param-
eters such as execution time, scheduling constraints, resource
usage, and machine workload. Soualhia et al. [47] collected histor-
ical workloads of Google cloud cluster over a period of one month
and achieved precision up to 97.4%, and a recall of up to 96.2% in
predicting faults based on the Random Forest algorithm. Further,
this prediction model has been adopted in Hadoop to improve
the scheduling decision for efficient fault recovery before the exis-
tence of fault; hence, it enhances the overall reliability and perfor-
mance of Hadoop [24].

On the other hand, fault recovery is employed to return the
faulty component to its normal behaviour after detecting a fault.
In the storage systems, data redundancy based on replication
and/or erasure coding approaches is used to ensure data avail-
ability and reliability. The replication approach simply works
by creating multiple copies of the original data and storing them
on different disks for availability and fault tolerance [48]. This
approach has been employed in GFS, HDFS, RAMCloud [49],
and Windows Azure Storage (WAS) [50] to provide high data
availability. With the replication, data are replicated on multiple
servers and different racks once the data are uploaded to the
storage system. The storage system has information about repli-
cas and their locations in the metadata file. During a fault, the
storage system refers to the replicated data directory for recov-
ery when the original data are inaccessible. In the worst case,
replication is futile if the original data and the replica are lost.
Another popular data redundancy approach is erasure coding.
Erasure coding creates and stores parity data along with the
original data on another disk instead of replicating the entire
chunks of data. In case of data loss on one disk due to a fault,
parity data can be reconstructed to produce the original data.
In (n, k) erasure coding, the data of size A is chunked into k
equal chunks, and the parity data are represented as n – k.
Therefore, any k out of n would reconstruct the original data.
For instance, any two inaccessible chunks of data can be recon-
structed from the parity data if the erasure coding is represented
as (4, 2). The two types of erasure coding; namely, maximum
distance separable (MDS) and non-MDS, are commonly used.
The MDS erasure-coded system can reconstruct any lost chunk
of data based on the parity data, while the non-MDS can only
reconstruct a few of the lost chunks [32]. Erasure coding has
recently been implemented in HDFS [51] due to its storage effi-
ciency. Besides, a popular implementation of erasure coding is
the Reed–Solomon coding (RSC), which is used by Facebook
and the Microsoft storage systems [43,52].
the hardware to the software level, and vice versa.
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Checkpointing, speculative execution and preemption are also
common fault tolerance approaches used in large-scale data pro-
cessing systems where the fault occurs at the processing time.
Checkpointing works by recording the state of an active node/pro-
cess to store it on another standby node. When the node fails, the
standby node takes over on the latest recorded state of the active
node for an efficient and fast fault recovery. Checkpointing is nor-
mally used in critical systems that involve real-time transactions
or stream processing where the latency is very low. For example,
Flink utilizes checkpointing to achieve exactly-once-processing
guarantees by taking a snapshot of the operator state, including
the current position of the input streams at regular intervals
[53]. Next, speculative execution duplicates the active tasks when
their performance is lower than a certain threshold because they
are suspected to fail. This approach allows a faster fault recovery
by considering the output of the high-performing tasks and termi-
nating their identical tasks that are performing poorly. YARN uses
this approach for fault recovery. Preemption is also a fault recovery
approach that is usually used by the task scheduler to provide effi-
cient fault recovery when the cluster runs out of full resource
capacity. It requires a predefined task preemption policy to termi-
nate the low-priority tasks and allow the available slots for re-
executing the high-priority tasks if they fail.
4. Fault tolerance challenges and solutions in big data systems

The recent challenges of fault tolerance in big data storage and
processing systems can be generally classified into storage capac-
ity, disk I/O, and bandwidth usage, fault detection latency, and
fault recovery efficiency as highlighted in Fig. 3.
4.1. Challenges and proposed solutions for the storage system

Fault tolerance strategies in the storage system are achieved
using data redundancy approaches, including replication and era-
sure coding. In replication, the system reliability is directly associ-
ated with the storage overhead. Thus, improving the storage
overhead without sacrificing reliability is a great challenge.
4

Although erasure coding offers huge storage savings with fair reli-
ability compared with replication, it introduces high disk I/O con-
sumption and data transfer overhead [54]. These challenges are
observed in most literature when conducting fault tolerance in
big data storage systems.

4.1.1. Storage capacity
The storage systems currently use the replication approach to

ensure data availability and reliability. This approach generates a
high level of data redundancy. For instance, GFS and HDFS proac-
tively create by default three replicas once the data are uploaded
to the storage system. Specifically, storing 1 TB of data would need
3 TB of storage space, which costs a huge amount of storage space
and increases the level of energy consumption.

4.1.2. Disk I/O and bandwidth usage
Erasure coding attracts attention nowadays due to its ability to

offer efficient storage consumption in data redundancy with
promising reliability assurance compared with replication [31].
However, the reconstruction process of the parity data stored on
multiple disks requires more disk I/O operations than replication
[52,55]. This challenge increases the latency and the number of
the read requests when accessing the parity data; it also increases
the data transfer among the nodes, especially if data are stored in
the distributed disks that are hosted on several nodes with differ-
ent locations.

4.1.3. Proposed solutions
Works by Li et al. [19,56] and Wei et al. [57] propose solutions

on minimising the replicated data while at the same time main-
taining data reliability requirements by focusing on the relation-
ship between the number of the replicated data and the
requirements of data availability and reliability. Works by Long
et al. [58] and Hassan et al. [59] use multi-objective strategies to
overcome the storage capacity overhead. Works by Huang et al.
[52,60] and Sathiamoorthy et al. [43] focus on improving erasure
code by manipulating local parity.

Wei et al. [57] proposed the cost-effective dynamic replication
management (CDRM) scheme for achieving a minimal number of
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replicas while meeting the availability requirement. CDRM uses a
mathematical model to capture the relationship between the num-
ber of replicas and the data availability requirement. The model
determines the minimum replicas by comparing the average fail-
ure rate and the existing number of replicas with the expected
availability requirements given by a user. When the requirement
is unsatisfied, CDRM dynamically creates new replicas. The system
has been implemented and integrated with HDFS. The experimen-
tal results showed that the adaption of this approach maintains an
optimal number of replicas with a stable storage. Another solution;
namely, the cost-effective dynamic incremental replication (CIR),
was proposed by Li et al. [56]. CIR dynamically determines the
number of replicas on the basis of a reliability model proposed
by the same study. The reliability model solves reliability functions
that provide minimal replica estimations. These functions estimate
the number of replicas needed on the basis of the reliability param-
eters, such as the probability of fault and storage duration. The
functions then demonstrate whether the current number of repli-
cas assures the requirement of data reliability. Thus, new replicas
are created incrementally when the replica number does not sat-
isfy the reliability requirement. The study also demonstrated that
CIR substantially reduces data storage consumption when the data
are stored for a short time. However, CIR is only based on the reli-
ability parameters and the pricing model of Amazon S3; thus, it is
unsuitable for Google clusters with a much higher fault rate than
the Amazon S3 storage. Similarly, Li and Yang [19] attempted to
minimise the number of replicas while meeting the data reliability
requirement. The authors presented a cost-effective reliability
management mechanism (PRCR) based on a generalised mathe-
matical model that calculates the data reliability with variable disk
failures. PRCR applies an innovative proactive replica checking
approach to ensure data reliability whilst maintaining data with
a minimum number of replicas. The evaluation results have
demonstrated that PRCR can manage a large amount of data and
significantly reduce storage space consumption at negligible
overhead.

Multi-objective strategies were proposed in [58,59] to over-
come the storage capacity overhead. In both the studies, the
authors argued that factors such as latency, number of replicas,
and storage cost were conflicting with one another in the storage
system. For example, achieving better latency and data availability
require creating additional replicas, and this requirement invari-
ably increases the storage capacity and the cost. Similarly, placing
the replicas on the most stable nodes may not be ideal from a
latency minimisation perspective. Therefore, multi-objective opti-
5

misation deals with these conflicting objectives were solved by
evolving a set of solutions that compromised these conflicting
objectives. Hassan et al. [59] proposed two algorithms; namely,
the multi-objective evolutionary (MOE) and the multi-objective
randomised greedy (MORG), for deciding the number of replicas
and their placement in a storage system. The MOE algorithm can
provide high-quality solutions albeit a longer execution time. By
contrast, the MORG algorithm is characterised by its superior com-
putational efficiency and yields solutions that are of comparable
quality. Both algorithms aim for a trade-off among three objec-
tives; namely, latency, reliability, and storage consumption, to
achieve the optimum number of replicas and efficient replica
placement. Following this work, Long et al. [58] also proposed a
multi-objective solution called the multi-objective optimised repli-
cation management (MORM) scheme based on the improved arti-
ficial immune algorithm [61]. The MORM depends on tracking the
historical system information and feeding it to a storage engine to
maintain and optimise five main objectives: file availability, mean
service time, load variance, energy consumption, and latency. Long
et al. [58] formulated each respective objective in a way that yields
close to the optimal values towards finding the ideal replication
factor and the replication layout in the storage system. The MORM
was evaluated and compared with the default replication strategy
of HDFS. The results conclusively demonstrated that the MORM is
better in terms of storage consumption and performance.

Works by Huang et al. [52,60] focus on optimising the erasure
coding in the storage system to achieve a minimal disk I/O and
the network traffic consumption when reconstructing lost data.
Huang et al. [60] proposed a basic pyramid coding (BPC) and used
erasure codes to reduce the reconstruction read costs in the storage
system. BPC aims to improve the read performance because it
greatly affects the overhead storage system performance. The read
performance is a primary concern in most storage systems because
they normally suffer more read operations than writes. The authors
reported that BPC can be formed from (11, 8) MDS. For instance,
the 8 data blocks of the MDS can be divided into two identical size
units. In this case, the number of the parity data is 3 according to
k – n. Accordingly, the global parities can be considered 2 out of
the 3, and they can be kept unchanged. Local parities reconstruct
two new redundant blocks from the two separately divided units.
The experimental results of this study showed that the proposed
solution can significantly decrease the read cost by 50% because
the local parities decrease the disk I/O when reconstructing the lost
data. Following this work, Huang et al. [52] introduced a local
reconstruction coding (LRC). In this work, the authors aimed to
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reduce the number of erasure coding fragments when performing
read operations for reconstructing offline data fragments while
maintaining low storage overhead in WAS. LRC is represented as
(k, l, r), where k is the divided data fragments by LRC into l local
groups. This approach encodes local parities one for each local
group l and r global parities. The local group can decode any signal
lost data fragment from k/l fragments. LRC can decrease the band-
width and I/O traffic when reconstructing offline data fragments
because the latency for decoding fragments is improved. In the
Facebook storage cluster, RSC is used as a standard fault-
tolerance approach to avoid the storage overhead caused by
three-replica-based storage systems. However, the high cost of
RSC is often considered the unavoidable price for storage efficiency
and reliability. Sathiamoorthy et al. [43] proposed an efficiently
repairable ensure code solution called XORing the Elephants. This
approach provides a higher efficiency in terms of disk I/O, network
bandwidth, and reliability than the RSC. The proposed solution was
implemented on a modified version of HDFS for the Facebook stor-
age clusters. This solution incorporates a local parity that was
defined as the LRC (10, 6, 5). Every 5 data blocks will be defined
as a local parity to tolerate any lost block by reconstructing it with
the remaining blocks in the group locally. The experimental results
of this study showed that this solution can significantly improve
the disk I/O and network bandwidth performance compared with
the RSC when reconstructing the parity with 14% storage overhead.
In this case, this overhead is further considered responsible for
their scenarios.

4.2. Challenges and proposed solutions for the processing system

During data processing, the system experiences various perma-
nent and transient faults due to numerous errors from the CPU,
network, memory, application code, or timeout as well as an unex-
pected response. These are common faults specifically in the data
processing environments where the data sources and processing
are distributed among different servers. Thus, the big data process-
ing systems demand a robust fault tolerance strategy that enables
them to reactively detect and recover faults at runtime before hav-
ing a complete failure of the service.

4.2.1. Fault detection latency
The current implementations of most big data systems are

based on the heartbeat detection approach [29,62,63]. During the
heartbeat detection process, high detection latency happens when
1) delay occurs on the static timeout value of the heartbeats, which
message is received after the entire system has been affected, and
2) the only indication of possible permanent faults provided when
partially or transient faults may still be able to reset the timer;
thus, it leads to a significant performance overhead.

4.2.2. Fault recovery efficiency
A fault of a single task negatively affects all the healthy running

data processing tasks and leads to an unpredictable execution
time. The current fault recovery approaches based on retry mech-
anisms, such as speculation execution that involves a high compu-
tation and suffers from various limitations. The high computation
occurs when the scheduler of the resource manager takes a long
time to launch the recovery tasks due to an overloaded or full
capacity of associated resources. Such a delay leads to the misplac-
ing or re- executing the faulty tasks from scratch.

4.2.3. Proposed solutions
Works by Gupta et al [64], Pinto et al. [65], Rosa et al. [66], and

Soualhia et al. [24,67] proposed fault prediction approaches to pre-
dict the faults earlier rather than relying on the default explicit
heartbeat approach used in big data systems. On the other hand,
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works by Yildiz et al. [68], Kadirvel et al. [69], Fu et al. [18], Mem-
ishi et al. [70], Liu and Wei [71], Zhu et al. [72], and Yuan et al. [73]
proposed fault recovery approaches to provide efficient recovery.
The authors of [18,68–70] intended to address the challenge from
the resource manager perspective by adopting fault tolerance
approaches to the resource scheduler. Further, the authors of
[71–73] attempted to apply checkpointing approaches to provide
an efficient fault recovery by checkpointing the state of the faulty
tasks.

Gupta et al. [64] proposed a predictive and feedback-based sys-
tem called Astro. The system has a predictive model that collects
information about the cluster behaviour, including 163 metrics,
such as CPU user per second, byte read per second, and thread
count. The predictive model performs a principal component anal-
ysis on each node of the cluster to detect possible future faults and
reduce the number of predicted variables of the collected metrics.
Astro posts the possible faults to its built-in scheduler via APIs. The
scheduler constructs suitable decisions to reject or allocate addi-
tional resources for improving cluster reliability and throughput.
The proposed system has been integrated with a Hadoop cluster.
The experimental results showed that Astro improves the resource
utilisation by 64.23% and the execution time by 26.68% under the
faults compared to the traditional fault detection approach used
by Hadoop. Next, Pinto et al. [65] reported that the current heart-
beat approach provides a late fault alert after the entire cluster is
affected. This condition increases the job execution time and
decreases the overall cluster throughput. Therefore, the study pro-
posed a fault detection solution based on performance monitoring
and fault prediction. Firstly, the proposed solution collects statisti-
cal data of the cluster resources on the basis of a popular perfor-
mance monitoring framework called Ganglia [74]. Secondly, the
collected data are used to train a support vector machine (SVM)
model for predicting the upcoming faults before they occur. The
SVM model then declares the suspected faults in every available
node. Accordingly, the client has an option to terminate or ignore
the suspected faults in a node. The simulation results of this study
showed that the proposed solution improves the fault detection
performance by predicting the faults before they occur; thus, it
improves the job execution time under faults. Similarly, Rosa
et al. [66] proposed a two-level neural network (NN) model and
resource conservation policy for failure prediction and recovery.
The prediction model predicts jobs and task-dependent failure pat-
terns. The prediction results contain the predicted tasks that will
fail. In the second stage, the resource conservation policy proac-
tively terminates the given tasks to reduce resource consumption.
The evaluation results of this study showed that this solution
reduces 49%, 45%, 18%, and 26% of the CPU, RAM, disk consump-
tions, and computational time, respectively, while incorrectly ter-
minating only 1% of successful tasks. Soualhia et al. [67]
proposed an adaptive failure-aware scheduler (ATLAS). ATLAS pre-
dicts task faults and adjusts the scheduling decisions dynamically
to reduce task fault occurrences and improve performance. The
methodology of ATLAS contains three main steps that provide
failure-aware scheduling decisions. Firstly, job and task attributes
are extracted by running different workloads on several nodes.
Secondly, the correlation between job and task scheduling results
is identified by analysing their dependencies. Thirdly, statistical
predictive machine learning based on the identified correlations
is used to predict the possible task faults. Numerous regression
and classification algorithms, such as the general linear model, ran-
dom forest, NN, boost, tree, and conditional tree, are applied to val-
idate the predictive model measurement in terms of accuracy,
precision, recall and error. The study results showed that ATLAS
minimises the failure rate of jobs and tasks and reduces the execu-
tion time and resource utilisation. However, ATLAS may provide
incorrect predictions that violate the scheduler decisions if unfore-
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seen types of faults occur. Soualhia et al. [24] conducted further
research and proposed a new version of ATLAS called ATLAS+. In
ATLAS+, the study focused on providing efficient and fault tolerant
scheduling policies that prevent the performance overhead under
the dynamic behaviour of the cluster environment. ATLAS+ con-
sists of three main components: task failure prediction, dynamic
failure detection and scheduling policy. The task failure prediction
collects historical logs about the executed jobs with their tasks on
the cluster environment and applies machine learning algorithm to
predict possible failures. The authors conducted an experimental
evaluation to compare different machine learning algorithms,
including Tree, Boost, Glm, CTree, random forest, and NN, for deter-
mining the most suitable for the MapReduce framework in terms
of accuracy, precision, recall, error percentage and execution time.
The results showed that the random forest algorithm is fit for pre-
dicting the Map and Reduce task failures. Another issue realized by
the same study is that the static timeout value of the heartbeat
detection approach leads the scheduler to assign tasks to a faulty
node if the node fails before the timeout value expires. Therefore,
a dynamic failure detection approach was proposed by Soualhia
et al. [24]. This approach dynamically adjusts the timeout value
of the heartbeat to allow low latency in fault detection and avoid
wasting time and resources when assigning tasks to a faulty node.
Thirdly, another scheduling policy was adopted in ATLAS+, and it
enables the scheduler to make an optimal strategy for reducing
or recovering faults. ATLAS+ has been integrated with Hadoop
MapReduce. The experimental results showed that ATLAS+ reduces
the number of failed jobs by up to 43% and the number of failed
tasks by up to 59%. ATLAS+ also reduces the total execution time
of jobs and tasks and the CPU and memory usage compared with
the default scheduler of Hadoop.

Yildiz et al. [68] proposed a failure-aware scheduling strategy
called Chronos, which enables an early and smart action for quick
fault recovery. Chronos involves a lightweight pre-emption tech-
nique for allocating resources for the recovery task. The resource
allocation collects a list of failed tasks along with their nodes that
host the task data and sorts them according to job priority. This
strategy then compares the priorities of failed tasks with recovery
tasks to perform task pre-emption actions, such as kill or suspend.
The experimental results of this study showed that Chronos per-
forms correct scheduling behaviour under faults in a few seconds.
However, this strategy may lead to resource wastage and perfor-
mance overhead if it performs incorrect pre-emption actions. Next,
Kadirvel et al. [69] proposed a technique that provides early fault
detection and management for MapReduce called fault-managed
Map-Reduce (FMR). FMR enables the detection and reduction of
faults that extend the job execution time and lead to inefficient
resource consumption. FMR adopts a prediction model based on
sparse coding to predict the computation time of running tasks
on each available node. The authors claimed that the required time
for training the prediction model is only a few seconds. FMR uses a
closed-loop for the fault management that provides dynamic
resource scaling. FMR uses the prediction model results to estimate
the MapReduce job execution time and compares the costs of exe-
cution time and additional resources required for removing fail-
ures. The comparison results showed that this technique makes
an appropriate scaling decision to enable minimal computing over-
head during failures. However, the disadvantage of this technique
is the necessity to use decentralised and local training of the mod-
els on every available node. This requirement may introduce inef-
ficient resource usage while training these models. Fu et al. [18]
proposed a framework that contains a central fault analyser
(CFA), which is a new speculation mechanism and scheduling pro-
cedure. The CFA monitors the failures at runtime and provided fail-
ure analysis to FARMS for a speculation decision. In the case of a
failed node, FARMS provides all the affected tasks, including the
7

completed ones, to launch SE tasks. After completing the SE, the
Reduce tasks are notified to fetch the output from the new tasks
rather than the primary tasks executed on the failed node. FARMS
speculates all the affected tasks at once when all the tasks are run-
ning on a struggler node. The proposed scheduling procedure is
called fast analytics scheduling. This procedure provides a trade-
off between fault detection performance and resource consump-
tion based on a dynamic threshold. The experimental results of this
study showed that this framework improves the performance of
the existing YARN SE when handling node failures. The authors
demonstrated that the proposed framework is specifically
designed for small jobs with a short turnaround time. Furthermore,
Memishi et al. [70] observed that the efficiency of fault recovery is
dependent on the latency of fault detection. Thus, the authors
attempted to address the challenge from the detection and recov-
ery perspectives. The study proposed three abstractions; namely,
high relax failure detector (HR-FD), medium relax failure detector
(MR-FD) and low relax failure detector (LR-FD). HR-FD estimates
the completion time of the workload and then adjusts the timeout
value of the heartbeat messages to decrease the latency of detect-
ing faults [70]. However, the timeout value remains static; thus,
MR-FD was proposed. MR-FD calculates the progress score of each
workload to dynamically adjust the timeout value. LR-FD was pro-
posed to expend MR-FD by monitoring the timeout of tasks and
workers. MR-FD launches a speculative task on another healthy
node when it detects un unexpected behaviour caused by a task
or a worker. The simulation results of this study showed that the
proposed abstractions outperform the existing heartbeat approach
of Hadoop in terms of performance. However, the proposed
abstractions in this study were only evaluated on a simulated envi-
ronment. Furthermore, Liu and Wei [71] proposed a checkpoint-
based active replication method to improve the current fault toler-
ance strategy of Hadoop in terms of resource usage and the job
execution time during data processing under faults. The proposed
solution consists of two checkpoint files created before the execu-
tion of Map tasks. The first checkpoint file is a local file responsible
for checkpointing the output of each running Map task. The second
checkpoint file is called the global index file, which is responsible
for reconstructing the intermediate results across nodes to reduce
the re-execution time in case of node failures. The global index can
be stored on HDFS for high availability. The experimental results of
this study showed that the proposed solution improves the
resource utilisation and overall execution time of Hadoop under
failures. Another study by Zhu et al. [72] proposed a novel fault tol-
erance strategy called fast recovery MapReduce, which uses a com-
bination of distributed checkpointing and proactive push
mechanism to provide low-latency when recovering from task
and node faults [72]. The checkpointing allows periodical recording
of the computational progress for each Map task as a checkpoint. In
the case of a fault, the recovered task can continue computing on
the basis of the recent checkpoint without the necessity to recom-
pute the entire data block. The checkpoint data of the tasks are
stored in a distributed data storage. The distributed data storage
can be HDFS or distributed memory. A proactive push mechanism
is also proposed in this solution in which the computational results
of Map tasks are proactively transferred to the Reducers when they
are produced without waiting for the completion of Map progress.
This proactive push mechanism is utilised to allow the use of any
data produced by the Map tasks before they fail. The evaluation
results of the study showed that this method improves the perfor-
mance by 55% during a task fault and by 45% during a node fault
compared with the original Hadoop fault recovery strategy. Yuan
et al. [73] proposed a strategy that offers efficient resource utilisa-
tion under task faults. This strategy is customised for MapReduce,
and it specifically monitors the nodes that launch Map task faults
to isolate whether they are faulty or strugglers on the basis of
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the node performance. This strategy uses external storage as a
cache server to store the output of the intermediate results of
Map tasks to be accessible in case of failures. The cache server
helps maintain the retrieval of the intermediate results of the com-
plete Map tasks in case the entire node failed to prevent executing
the complete tasks from scratch. The simulations of this study
showed that this strategy maintains the high performance of the
cluster while avoiding the re-execution of complete Map tasks,
especially for the large MapReduce jobs. However, the study did
not show the influence of the proposed strategy on resource utili-
sation while detecting Map tasks and transferring the intermediate
task results to the cache server.
5. Analysis

Several researchers are increasingly concerned with fault toler-
ance in big data storage and processing systems for high reliability
and efficient performance and resource utilisation under faults.
This work reviewed several studies related to fault tolerance in
big data storage and processing systems. Table 1 shows an identi-
fication of the conducted studies, while Table 2 provides a sum-
mary of the reviewed studies with the challenges, solutions, and
the experimental setup. According to Table 1, there are more stud-
ies that have been recently conducted on fault tolerance in the pro-
cessing system than in the storage system. The results also showed
that the research efforts to improve the fault tolerance in the pro-
cessing systems are growing. However, the studies for addressing
the fault tolerance challenges in the big data storage systems have
been inactive in recent years. This phenomenon may be due to the
significant cost of the processing system’s computational
resources. Furthermore, we categorised the proposed solutions
according to their fault tolerance approaches as projected in Table 2
and these categories are further analysed and discussed in the fol-
lowing subsections. Tables 3 and 4 provide the advantages and the
disadvantages of the proposed solutions.
5.1. Analysis of the proposed solutions for big data storage system

The reviewed studies in Table 2 showed that the proposed fault
tolerance solutions can be classified into different solution cate-
gories to address the challenges of big data storage and processing
systems. The main three solution categories to address the storage
Table 1
Quick identification of fault tolerance challenges in big data storage and processing system

Reference Storage Processing

[24] U

[72] U

[70] U

[65] U

[68] U

[19] U

[67] U

[71] U

[66] U

[58] U

[64] U

[60] U

[43] U

[69] U

[73] U

[52] U

[56] U

[57] U

[59] U

Note: SC: Storage Capacity, DIOBU: Disk I/O and Bandwidth Usage, FDL: Fault Detection
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system challenges are reliability trade-off, multi-objective optimi-
sation and erasure coding optimisation. Reliability trade-off solu-
tions were proposed to investigate the relationship between the
storage system data reliability and the proper number of replicas
for decreasing the storage capacity overhead. Next, the multi-
objective optimisation solutions have focused on optimising vari-
ous factors, such as data availability, latency, and storage cost, that
influence the storage capacity overhead challenge. Next, erasure
coding optimisation solutions were proposed with various algo-
rithms that aim to mitigate the challenges of the high disk and I/
O usage in the storage system. The advantages and disadvantages
of the three solution categories are elaborated in Table 3.

Reliability trade-off solutions [19,56,57] have reduced the num-
ber of the replicated data by investigating the relationship between
the data reliability requirements and the number of replicas. How-
ever, they have not drastically overcome the issue when terabytes
or petabytes of data must be replicated for data availability. Fur-
thermore, the studies have not focused on other affected factors,
such as data locality and access latency, that would decrease the
performance of the entire storage system if the replicas have not
been placed properly. By contrast, multi-objective optimisation
solutions [58,59] deal with a set of objectives, such as replica num-
ber, replica placement, energy consumption, and storage cost, that
compromise the storage capacity challenge. They have achieved
the optimum number of replicas with the minimum performance
overhead compared with the current replication strategies of big
data storage systems, such as HDFS. In summary, the proposed
solutions based on the replication approach have minimised the
number of data redundancy in the storage systems. However, none
of them can minimise the storage capacity overhead without sac-
rificing reliability.

Erasure coding optimisation solutions [43,52,60] aimed to opti-
mise the performance of erasure coding in popular storage sys-
tems, such as HDFS and WAS. Huang et al. [52] reduced the code
reconstruction read cost by 50%. Sathiamoorthy et al. [43] reduced
the disk I/O usage and network traffic during the reconstruction.
However, the repair overhead of erasure coding is approximately
10 times higher than the replication. All the studies have only
focused on the permanent disk faults where there are transient
faults that also lead to data unavailability for a certain period. A
hybrid fault tolerance strategy based on replication and erasure
coding for the storage system that can provide minimum storage
overhead and high disk I/O performance has not yet been achieved.
s addressed by previous studies.

SC DIOBU FDL FRE

U

U

U U

U

U

U

U

U

U U

U

U

U

U

U

U

U

U

U

U

Latency and FRE: Fault Recovery Efficiency.



Table 2
Summary of the challenges, solutions, and experimental setup of previous studies for achieving fault tolerance in big data storage and processing systems.

Fault Tolerance
Strategy

Challenge Fault Tolerance
Solution Category

Ref. Experimental
Environment

Fault Type Evaluation Metrics

Fault Recovery Storage Capacity Reliability Trade-off [57] HDFS Permanent Availability, Failure Rate and Replica Number
[56] Amazon S3 Permanent Reliability and Replica Number
[19] Amazon EC2 and

S3
Permanent Reliability and Replica Number

Multi-objective
Optimisation

[59] Peer-to-peer
Overlay

Permanent Reliability, Storage Capacity and Latency

[58] CloudSim Permanent File Unavailability, Service Time, Load Variance,
Energy Consumption and Latency

Disk I/O and
Bandwidth Usage

Erasure Code
Optimisation

[60] WAS Permanent Disk Read Overhead
[52] WAS Permanent Latency, I/O and Bandwidth
[43] Facebook HDFS Permanent Byte Read, Network Traffic and Repair Time

Fault Detection Fault Detection
Latency

Fault Prediction [64] Hadoop Cluster Permanent Compute Resource Usage and Execution Time
[65] Hadoop and

Ganglia
Transient CPU Usage

[66] Google Cluster
Trace

Permanent CPU, RAM, Disk Usage and Execution Time

[67] Amazon EMR Transient and
Permanent

CPU, RAM, HDFS I/O, Number of Failed Jobs and Tasks
and Execution Time

[24] Amazon EMR Transient and
Permanent

CPU, RAM, HDFS I/O, Number of Failed Jobs and Tasks
and Execution Time

Fault Recovery Fault Recovery
Efficacy

Preemption [68] Hadoop on
Grid’5000

Permanent Data Locality and Execution Time

Dynamic Resource
Scaling

[69] Hadoop on IBM
Blade Servers

Transient and
Permanent

Execution Time

Speculative
Execution

[18] Hadoop YARN Transient Execution Time

Speculative
Execution

[70] Statistical-based
Simulation

Transient Execution Time

Fault Recovery Fault Recovery
Efficacy

Checkpointing [71] Hadoop Cluster Permanent Storage Capacity, Bandwidth and Execution Time
[72] Hadoop Cluster Permanent Execution Time
[73] CloudSim Permanent Execution Time

Table 3
Advantages and disadvantages of the proposed fault tolerance solutions for big data storage systems.

Solution Category Advantages Disadvantages

Reliability Trade-off It reduces storage cost by minimising the number
of replicas based on the reliability requirement.

Specific system
parameters must
be set to trade-off
between storage
usage and
reliability.

Multi-Objective Optimisation It reduces storage cost by considering multiple objectives, such as efficient replica
placement for the minimum latency and minimising the number of the replica with fair reliability.

It is unsuitable for
the storage system
that requires
dynamic changes
in its
infrastructure.

Erasure Coding Optimisation It offers efficient data redundancy with a high level of fault tolerance. It involves high
disk I/O usage and
network
bandwidth
overhead
especially if the
level of data
distribution is
high.
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5.2. Analysis of the proposed solutions for big data processing system

The proposed solutions of the conducted studies to address
fault tolerance challenges in the processing system are categorised
into fault prediction, preemption, dynamic resource scaling, specu-
lative execution, and checkpointing. The advantages and disadvan-
tages of these solution categories are projected in Table 4.

Fault prediction solutions aim to address the lack of fault detec-
tion in the processing systems by providing early fault prediction
before the fault occurs. Proposed solutions in [24,64–67] have
9

reduced the number of faults and prevented an expected
performance violation by suspecting faults before they occur.
These solutions are mainly focused on permanent faults because
these faults lead to high-performance overhead and resource con-
sumption. Most fault prediction solutions are evaluated in real big
data processing environments, including Hadoop cluster or Ama-
zon EMR. The evaluation metrics used to measure the performance
in the fault prediction solutions are the workload execution time
and compute resource consumption. Although fault prediction
solutions offer early fault detection and improve the system



Table 4
Advantages and disadvantages of the proposed fault tolerance solutions for big data
processing systems.

Solution
Category

Advantages Disadvantages

Fault
Prediction

It solves the challenge of
high detection latency by
alerting a fault before it
occurs.

It involves a predicative
model that needs to be fed
with various system metrics
and previously generated
fault.

Preemption It adjusts the task scheduler
decision by offering efficient
fault recovery in terms of
computation for high
priority tasks.

It requires a task pre-
emption policy that
considers task correlations,
priority, execution time, and
resource utilisation.

Dynamic
Resource
Scaling

It allows the system to
dynamically scale up for
providing a healthy
environment for re-
executing a faulty task.

The computation time of the
running tasks on each active
node must be calculated to
provide a suitable resource
allocation.

Speculative
Execution

It ensures a high level of
fault tolerance with a fair
performance by duplicating
the running tasks.

It requires additional
computational resources.

Checkpointing It provides a high level of
fault tolerance for real-time
data processing by recording
the state of each active node
or task and replicating it on
another stable environment.

The consistency of the
replicated state is
challenging, and the cost of
CPU consumption is high.
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performance and resource consumption compared with the default
fault detection approach, they still cannot predict every possible
type of fault, especially in large-scale environments where faults
are unforeseeable.

Furthermore, the efficiency of fault recovery in the processing
systems is significantly challenging in terms of performance
because such systems execute their workloads on the distributed
servers in parallel. One faulty task during the processing time
affects the overall performance of the workload if it has been
recovered improperly. Thus, solutions in the three categories
including speculative execution, preemption, and dynamic
resource scaling reported that the efficiency of fault recovery is
mostly related to the task scheduler of the resource manager
[18,68–70]. Specifically, if a fault occurs when the cluster is run-
ning at full computational capacity, then the scheduler must wait
for an empty slot to re-execute the faulty task on another healthy
node. In this way, it extends the execution time of the entire
workload, which degrades the overall performance and resource
consumption. Although the proposed solutions have improved
the efficiency of the existing fault recovery approaches in the
respective systems, they have only focused on the gab from one
individual view, which is fault recovery. Nevertheless, fault recov-
ery depends on the result of fault detection. In other words, if a
delay in detecting a fault occurs, then the fault recovery action
would be negatively affected because the recovery decision relies
on the availability of the computational resources that are
dynamically changing at the processing time; by contrast, fast
fault detection leads to a fast and efficient fault recovery. Only
Memishi et al. [70] and Rosa et al. [66] focused on fault detection
and recovery challenges in their fault tolerance solutions. Rosa
et al. [66] applied a fault prediction solution to predict faults
and upon the prediction result, provided a preemption approach
for terminating the suspected faults before they exist for recov-
ery. Likewise, Memishi et al. [70] proposed a solution that adjusts
the timeout value of the heartbeat messages to accelerate the
speed of detecting fault; thus, this method avoids any unexpected
behaviour of the speculative execution in the fault recovery stage.
Moreover, the solutions under the checkpointing category also
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aim to address the challenge of fault recovery efficiency [71–
73]. These solutions allow periodical recording of the computa-
tional progress of each executed task to avoid inefficiently re-
executing the faulty task from scratch. This approach offers huge
savings in terms of execution time and computational consump-
tion. For instance, Zhu et al. [72] showed that the checkpointing
approach improves the overall performance by 55% during task
faults and by 45% during node faults. However, the consistency
of checkpointing the state of the running tasks is challenging.
Although all the proposed solutions can be applied in the com-
mon big data processing systems to mitigate the highlighted chal-
lenges, most of the studies are only focused on the fault tolerance
challenges observed in MapReduce and YARN systems.

6. Future directions

This review has shown the growing demand to implement fault
tolerance in big data systems. In the storage systems, various chal-
lenges, such as the mechanisms by which to minimise the storage
overhead and disk read and write costs and reduce the network
bandwidth, have been introduced when offering fault tolerance.
The following challenges in the processing systems have also been
introduced when providing fault detection and fault recovery:
quick and precise detection of faults before causing damage or per-
formance penalties and recovery of the system into its normal state
within a minimum performance overhead and optimum resource
usage. The following directions are listed to address the above-
mentioned challenges in the future research.

� A combination of fault prediction and replication approach for
the storage systems’ fault tolerance is needed. This combination
can use fault prediction to predict faults. Upon prediction, repli-
cation can be performed dynamically to create the minimum
number of replicas without sacrificing data reliability, and
availability.

� A hybrid technique that involves erasure coding and replication
can also be applied in the storage systems. Erasure coding is
storage efficient compared to replication, and replication pro-
vides a saving network traffic and disk I/O. Thus, a hybrid tech-
nique that can merge the best features of each fault-tolerance
approach is a promising future research.

� An adaptive speculative execution and dynamic heartbeat-
based approach for fault detection and recovery that accurately
estimates the workload processing time and sets the timeout
value on the fly is needed to improve the performance of fault
detection in detecting permanent faults. Although heartbeat
detection has limitations in detecting transient faults, specula-
tive execution can be adapted to duplicate strugglers by moni-
toring their processing progress and terminate the slow running
tasks dynamically for avoiding extensive computational
resource usage.

� A new decentralised method for fault detection and recovery
can overcome the fault tolerance challenges in the processing
systems. The processing systems determine the locations of
data chunks and their backup copies in the storage system.
Thus, rather than relying on the cluster’s master node in han-
dling fault detection and rescheduling faulty tasks, each node
that hosts the redundant data can act as a partner node and
establish a peer-to-peer communication with the other node
that runs the data processing tasks on the original chunk of data
and periodically exchanges heartbeats for fault detection. In the
case of a faulty task or node, the partner node quickly takes over
and re-executes the affected tasks. With this method, the load
of fault detection will be distributed among nodes rather than
handled by the master node. The latency of detecting and recov-
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ering faults is also expected to be improved. This method can
support data locality and can thus reduce network traffic if
the redundant data are stored in the same rack that hosts the
original data.

7. Limitation

The sources used in this review paper are selected from reliable
database engines that include IEEE Xplore, ScienceDirect, Web of
Science, and Google Scholar to cover broad aspects of the fault tol-
erance topic in large-scale systems, specifically big data systems. In
addition, this review has covered numerous research papers from
journals, conferences, technical reports, and workshops. However,
the identification of the fault tolerance challenges is limited to cer-
tain factors, such as the time frame of conducting the review and
the increased research progress in this area. The research scope
is set to two main criteria: the fault tolerance challenges in the
storage and the processing systems. These two types of big data
systems are commonly used together in big data clusters to enable
reliable and fault-tolerant big data solutions. Therefore, scientific
articles that have provided fault tolerance solutions for big data
systems are only included for the identification of their fault toler-
ance challenges and reviewing of their solutions. Works that have
only focused on fault tolerance or big data system as the main topic
are excluded in this review.
8. Conclusion

Fault tolerance plays a predominant role in enabling big data
systems to provide reliable data storage and processing services.
Big data systems reside in large-scale environments that are
exposed to numerous faults. Accordingly, various fault tolerance
approaches have been used in big data systems to improve relia-
bility and maintain consistent data processing under faults. Fault
tolerance in storage systems relies on data redundancy
approaches, including replication and erasure coding. In the
meantime, fault tolerance in the processing system requires
detecting and recovering faults at the processing time. This paper
briefly explained big data systems including the storage and pro-
cessing layers that are vulnerably subjected to faults and failures.
Moreover, this study provided an overview of fault tolerance con-
cepts, including common fault types that occur in large-scale sys-
tems and the fault tolerance approaches used to tolerate the
faults. Furthermore, this paper classified the common fault toler-
ance challenges faced by previous studies that proposed fault-
tolerance solutions for big data systems. The classified challenges
are storage capacity and disk I/O and bandwidth usage in the
storage systems and fault detection latency and fault recovery
efficiency in the processing systems. For each of the challenges
found in big data storage and processing systems, the approaches
taken by research are further discussed and analysed. The future
research directions are listed, and they can be applied to big data
systems or other large-scale systems to improve the efficiency of
fault tolerance and overcome the highlighted challenges. The
findings derived from this review can serve as a useful guide to
facilitate the progress of conducting future research in fault toler-
ance for big data systems.
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