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A B S T R A C T

With the increase of fall incidents in emergency cases and expenditures in the healthcare sector, fall prevention
has become a very important study. The aim of this paper is to develop a ranking system to capture the risky
gaits to aid in the reduction of fall incidents. With this, an approach driven framework under the interval-
valued intuitionistic fuzzy environment is developed for decision making. The proposed framework is validated
by experimental data and is seen to be effective and reliable. It is applied to risky gaits and a ranking is
obtained based on the mindset one chooses. Technically, we also extended the entropy measure to incorporate
the hesitancy factor to interval-valued region where a new measuring function is introduced. We believe that
the proposed system will provide a better support for rehabilitation arrangements.
1. Introduction

Falls are the most prevalent cause of injuries and it can be fatal. In
the literature, many researches related to this issue dealt with the cases
where falls have happened. For instance, the inertial-based wearable
devices were developed for fall monitoring (Pannurat et al., 2014),
a two-stage fall detection system was proposed by Stone and Skubic
(2014) and Kau and Chen (2015) studied a smartphone based fall
detection and rescue system. Although most of these systems alert the
caregivers and prompt for immediate interventions, they only lead to
the reduction of fall consequences but do not prevent the injuries.
As a result of this, fall prevention systems are pressing a priority.
Recently, Rescio et al. (2018) proposed an electromyography based pre-
fall detection system that recognizes a fall incident during the initial
phase for a better activation of the protection system.

Many studies have been conducted to detect fall incidents after
they have occurred but an early prediction of fall risk for support
intervention will help in avoiding the painful and costly aftermath that
a fall event may cause. Also, fall prevention is of great importance
and will have a substantial impact on the well being. Some of the
existing fall prevention systems in the healthcare domain is either event
based (Ni et al., 2012) or wearable pressure sensor based (Majumder
et al., 2013). Most fatal and non-fatal injuries among people are caused
by falls. However, there is no data based on real falls as a person would
be required to undergo a fall which can be injurious and unsafe (Khan
& Hoey, 2017). With the present generations prefer to do everything
on the go, young adults have become more prone to falls than never
before (Licence et al., 2015). Distracted walking is not only a safety
concern but also alters and deteriorates one’s gait over a period of time
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that will increase the risk of falls. Gait parameters are known to be
associated with falls (Bautmans et al., 2011) and can assist in screening
potential fallers (Senden et al., 2012). Therefore, an analysis of one’s
gait as early as possible will help to prevent falls and also provide a
better health by timely rehabilitation.

The premise of this work is to assess potential fallers risky gait in
order to obtain support intervention. Gaits are seen to have a lot of
intra-variations for a single person and inter-variations among people.
Therefore, in this paper, we propose to employ interval-valued theory
with intuitionistic fuzzy sets to handle the inconsistency and spread
measures in gait data. The interval-valued theory is necessary as the
degrees of belief cannot be mentioned precisely. With crisp values, the
inconsistency of human reasoning is difficult to handle. Also, exact
information is not feasible all the time as in real life situations, impreci-
sion and vagueness do exist. Decision-makings for healthcare problems
is extremely critical and more often than not the data involved in such
scenarios revolve around uncertainties.

Intuitionistic fuzzy sets (Atanassov, 1999b) come in handy for rep-
resenting uncertainties with their characteristic values of membership
and non-membership. An extension of intuitionistic fuzzy sets in the in-
terval domain was introduced by Atanassov (1999a) where the interval-
valued intuitionistic fuzzy sets (IVIFS) express both the membership
and non-membership degrees in the interval forms, but not in the exact
values. These are effective tools for researchers when inexact intervals
are required to deal with uncertainty (Reiser & Bedregal, 2013). In the
literature, multi-criteria decision making techniques and models were
also presented by some authors using IVIFS (Hajiagha et al., 2015; Wan
& Dong, 2015; Wu & Chiclana, 2012). Having an edge in dealing with
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imprecise data in the real world scenarios, IVIFS has been successfully
applied in diverse fields such as warehouse evaluation (Chai et al.,
2013), outsourcing providers (Ebrahimnejad et al., 2015), and hotel
selection (Cheng, 2018).

In this paper, we propose an approach driven system to rank the
risky gaits. To this end, first, medical experts will evaluate the obser-
vational temporal and spatial gait characteristics of different subjects.
Based on the provided assessments with judgment confidence, the
ranking of different subjects are provided in terms of (i) optimistic, (ii)
pessimistic, or (iii) neutral mindset approach. This is to help in pro-
cessing information and provide a better decision with respect to one’s
mental attitude or belief. A fusion of these three approaches, namely
Optimistic Pessimistic Neutral (OPN) approach, is also provided. Beside
that, the decision framework has an entropy measure with hesitancy to
objectively weight the attributes in different approaches. This will help
to tackle the uncertainty in the system. A new measured membership
score (MMS) is applied for a more effective ranking of subjects with
risky gaits to get support intervention.

The contributions of this paper are, first, we propose a framework
that is based on IVIFSs to prevent falls. A geometrical representation of
decision making in IVIFS is also presented. Second, a new measuring
function is proposed for a more effective ranking. Third, technically,
we extend the entropy measure to an interval-valued region. The rest
of the paper is as follows. In Section 2, we briefly introduce the IVIFSs,
entropy measures, and score functions. In Section 3, we provide the
decision-making framework. In Section 4, a geometrical representation
of this decision making framework is presented. In Section 5, the
framework is applied to a problem of risky gaits and subjects are
ranked based on the different approaches. With some final remarks,
we conclude in Section 6.

2. Background

In real life, decision making on most of the occasions is generally
not binary from the instant we encounter a problem. It is an ambiguous
process as human thinking often explores with impreciseness. To in-
corporate such approximate reasoning where the concept of something
neither being absolutely true or false could exist, the fuzzy set theory
was introduced and has had various extensions.

2.1. Intuitionistic Fuzzy sets (IFS)

IFS was introduced by Atanassov (1999b) where a set 𝐴 of the
niverse of discourse 𝑈 is given by:

= {𝑢, 𝜇𝐴(𝑢), 𝜈𝐴(𝑢)|𝑢 ∈ 𝑈}

here 𝜇 is the membership degree, 𝜇𝐴 ∶ 𝑈 → [0, 1], 𝜈 is the non-
embership degree, 𝜈𝐴 ∶ 𝑈 → [0, 1] and

≤ 𝜇𝐴(𝑢) + 𝜈𝐴(𝑢) ≤ 1,∀𝑢 ∈ 𝑈

In this paper, we also adopt the definition proposed in Xu (2007),
.e. if 𝛼1 = [𝜇1, 𝜈2] and 𝛼2 = [𝜇2, 𝜈2] are two IFSs, and 𝜆 is a positive real
umber:

𝛼 = [1 − (1 − 𝜇)𝜆, 𝜈𝜆]
𝜆 = [𝜇𝜆, 1 − (1 − 𝜈)𝜆]

1 ⊕ 𝛼2 = [1 − (1 − 𝜇1)(1 − 𝜇2), 𝜈1𝜈2]

1 ⊗ 𝛼2 = [𝜇1𝜇2, 1 − (1 − 𝜈1)(1 − 𝜈2)]
2

he given 𝛼1 and 𝛼2 are equal if and only if 𝜇1 = 𝜇2 and 𝜈1 = 𝜈2
.2. Interval valued intuitionistic Fuzzy set (IVIFS)

IVIFS is an extension of IFS Atanassov (1999a) where IVIFS 𝐴 over
he universe of discourse 𝑋 is of the form

= {(𝑥, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥))|𝑥 ∈ 𝑋}

here 𝜇𝐴 is an interval of membership degrees and 𝜈𝐴 is an interval of
on-membership degrees for the element 𝑥, both with ranges [0,1]. The
ower bounds and upper bounds of 𝜇𝐴 and 𝜈𝐴 are denoted as 𝜇

𝐴
, 𝜇𝐴,

and 𝜈𝐴, 𝜈𝐴 respectively. Therefore, an IVIFS 𝐴 can be better represented
as:

𝐴 = {(𝑥, [𝜇
𝐴
(𝑥), 𝜇𝐴(𝑥)], [𝜈𝐴(𝑥), 𝜈𝐴(𝑥)])|𝑥 ∈ 𝑋} (1)

where the following condition holds true:

0 ≤ 𝜇𝐴(𝑥) + 𝜈𝐴(𝑥) ≤ 1 (2)

The hesitancy factor, or hesitation degree for an IVIFS 𝐴 is denoted by
ℎ𝐴 where the interval [ℎ𝐴(𝑥), ℎ𝐴(𝑥)] is calculated by:

ℎ𝐴 = 1 − 𝜇𝐴 − 𝜈𝐴 (3)

ℎ𝐴 = 1 − 𝜇
𝐴
− 𝜈𝐴 (4)

The hesitancy factor represents the hesitation or the lack of confidence
in the element’s sureness about something. Decision making often in-
volves uncertainty and IVIFS provides the means to tackle the fuzziness
and inexactness associated with it.

2.3. Entropy measure

Uncertainty in a system can be defined by entropy and has been
widely used in decision-making problems. An entropy weight model
for IVIFSs was proposed by Ye (2010) to determine the criteria weight.
Consequently, Wei and Zhang (2015) proposed to solve multi-criteria
problems using cosine entropy functions whereas Düğenci (2016) used
distance measure based function. Recently, Narayanamoorthy et al.
(2019) showcased an entropy based method for industrial applications
and Takáč et al. (2018) introduced interval entropy. Among the various
measures that exist, some of the existing IVIFS entropy measures are:

(a) Jun Ye’s Entropy:

𝐸𝐽𝑌 (𝐴)

= 1
𝑛

𝑛
∑

𝑖=1

1
√

2 − 1

(

cos
𝜋(1 + 𝜇

𝐴
(𝑥𝑖) + 𝑝[𝜇𝐴(𝑥𝑖) − 𝜇

𝐴
(𝑥𝑖)] − 𝜈𝐴(𝑥𝑖) − 𝑞[𝜈𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)])

4

+ cos
𝜋(1 − 𝜇

𝐴
(𝑥𝑖) − 𝑝[𝜇𝐴(𝑥𝑖) − 𝜇

𝐴
(𝑥𝑖)] + 𝜈𝐴(𝑥𝑖) + 𝑞[𝜈𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)])

4
− 1

)

(5)

This entropy measure was proposed by Ye (2010) to establish an
exact model for weighing the criteria and evaluate for the weighted
correlation coefficient.

(b) Wei et al. Entropy:

𝐸𝑊𝐶 (𝐴)

= 1
𝑛

𝑛
∑

𝑖=1

min{𝜇
𝐴
(𝑥𝑖), 𝜈𝐴(𝑥𝑖)} + min

{

𝜇𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖)
}

+ ℎ𝐴(𝑥𝑖) + ℎ𝐴(𝑥𝑖)

max{𝜇
𝐴
(𝑥𝑖), 𝜈𝐴(𝑥𝑖)} + max

{

𝜇𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖)
}

+ ℎ𝐴(𝑥𝑖) + ℎ𝐴(𝑥𝑖)

(6)

ei et al. (2011) generalized three existing entropy into one and tried
onstructing similarity measures.

(c) Liu Jing’s Entropy:

𝐿𝐽 (𝐴)

= 1
𝑛

𝑛
∑

2 + ℎ𝐴(𝑥𝑖) + ℎ𝐴(𝑥𝑖) −
|

|

|

𝜇
𝐴
(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)

|

|

|

− |

|

𝜇𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)|| (7)
𝑖=1 2 + ℎ𝐴(𝑥𝑖) + ℎ𝐴(𝑥𝑖)
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A real-valued continuous function for entropy was introduced by Jing
(2013) which increases with respect to intuitionism.

(d) Zhang et al. Entropy:

𝐸𝑍𝑋 (𝐴) = 1 − 1
2𝑛

𝑛
∑

𝑖=1

[

|

|

𝜇𝐴(𝑥𝑖) − 0.5|
|

+ |

|

|

𝜇
𝐴
(𝑥𝑖) − 0.5||

|

+ |

|

𝜈𝐴(𝑥𝑖) − 0.5|
|

+ |

|

|

𝜈𝐴(𝑥𝑖) − 0.5||
|

]

(8)

Zhang et al. (2014) presented an entropy measure based on distance
along with a new axiomatic definition.

(e) Wei and Zhang’s Entropy:

𝐸𝑊𝑍 (𝐴) =
1
𝑛

𝑛
∑

𝑖=1
cos

|

|

|

𝜇
𝐴
(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)

|

|

|

+ |

|

𝜇𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)||

2
(

2 + ℎ𝐴(𝑥𝑖) + ℎ𝐴(𝑥𝑖)
)

𝜋 (9)

A more sufficient entropy measure for describing uncertain information
was proposed by Wei and Zhang (2015).

Here, we consider a few IVIFSs, singletons and non-singletons, to
look at the effectiveness of the above-mentioned entropy measures.

Let us consider two IVIFSs 𝐴([0.1,0.2],[0.3,0.4]) and 𝐵([0.5, 0.5],
[0.3, 0.3]). It can be intuitively seen that 𝐴 is fuzzier than 𝐵. On using
Jun Ye’s entropy Eq. (5), we see that 𝐸𝐽𝑌 (𝐴) = 𝐸𝐽𝑌 (𝐵) = 0.96, making
𝐴 and 𝐵 indistinguishable. Also according to Zhang et al. (2014), or the
Eq. (8), 𝐵 is more fuzzy than 𝐴 as 𝐸𝑍𝑋 (𝐴) = 0.50 and 𝐸𝑍𝑋 (𝐵) = 0.80
which is counter-intuitive.

Let the two IVIFSs be 𝐴([0.5,0.5],[0.1,0.1]) and 𝐵([0.6,0.6],
[0.2,0.2]). We find that 𝐸𝐽𝑌 (𝐴) = 𝐸𝐽𝑌 (𝐵) = 0.83 and 𝐸𝑍𝑋 (𝐴) =
𝐸𝑍𝑋 (𝐵) = 0.60. 𝐴 and 𝐵 stand to have same importance which is irra-
tional. Similar case is observed when considering 𝐴([0.5,0.5],[0.0,0.0])
and 𝐵([0.7,0.7],[0.2,0.2]) as 𝐸𝐽𝑌 (𝐴) = 𝐸𝐽𝑌 (𝐵) = 0.74 and 𝐸𝑍𝑋 (𝐴) =
𝐸𝑍𝑋 (𝐵) = 0.50.

It is observed that the entropy measures produce identical value for
two IVIFSs 𝐴 and 𝐵 when |𝜇 − 𝜈| and |𝜇 − 𝜈| have the same difference
for both. One rationale for this happening is the fact that hesitancy
factors of the IVIFSs are not considered during the evaluations of
entropy measures.

Entropy measures using Eq. (6), Eq. (7) and Eq. (9) factor in the
hesitancy and are seen to produce desirable results for all the above
considered IVIFSs, but still have limitations. If the two IVIFSs consid-
ered are 𝐴([0.5,0.5],[0.0,0.0]) and 𝐵([0.6,0.6],[0.2,0.2]), we see that
q. (6), Eq. (7) and Eq. (9) failed to differentiate them. They yield
𝑊𝐶 (𝐴) = 𝐸𝑊𝐶 (𝐵) = 0.50, 𝐸𝐿𝐽 (𝐴) = 𝐸𝐿𝐽 (𝐵) = 0.67 and 𝐸𝑊𝑍 (𝐴) =
𝑊𝑍 (𝐵) = 0.87 respectively, producing undesirable results. This urges

or the need of a better entropy measure for IVIFS. In Section 3.3 we
resent an entropy measure which overcomes the above limitations.

.4. Scoring function

IVIFSs are generally compared and ranked using some form of met-
ic measures. The commonly used score function and accuracy function
ere proposed by Xu and Jian (2007) and a novel accuracy function

or multi-criteria was introduced by Ye (2009). A new uncertainty
ndex for membership and hesitation (Wang et al., 2009) was used
o compare two interval-valued intuitionistic fuzzy numbers (IVIFNs),
nd Nayagam et al. (2011) developed a ranking method. Some of the
easure function for an IVIFS 𝛼 are as follow:

(i) Score function (Xu & Jian, 2007):

1(𝛼) =
𝜇 + 𝜇 − 𝜈 − 𝜈

2
(10)

(ii) Accuracy function (Xu & Jian, 2007):

2(𝛼) =
𝜇 + 𝜇 + 𝜈 + 𝜈

2
(11)

(iii) Novel Accuracy function (Ye, 2009):

(𝛼) = 𝜇 + 𝜇 − 1 +
𝜈 + 𝜈

(12)
3

3 2 w
(iv) Membership Uncertainty Index function (Wang et al., 2009):

𝑆4(𝛼) = 𝜇 + 𝜈 − 𝜇 − 𝜈 (13)

(v) New Accuracy function (Nayagam et al., 2011):

𝑆5(𝛼) =
𝜇 + 𝜇 + 𝜈(1 − 𝜇) + 𝜈(1 − 𝜇)

2
(14)

Let 𝛼1 = ([0.20, 0.20], [0.40, 0.40]), 𝛼2 = ([0.15, 0.25], [0.35,
0.45]), 𝛼3 = ([0.10, 0.30], [0.30, 0.50]), 𝛼4 = ([0.05, 0.35], [0.25,
0.55]). The corresponding values for the IVIFSs using the above men-
tioned measure functions are:

𝑆1(𝛼1) = 𝑆1(𝛼2) = 𝑆1(𝛼3) = 𝑆1(𝛼4) = −0.20 ;
𝑆2(𝛼1) = 𝑆2(𝛼2) = 𝑆2(𝛼3) = 𝑆2(𝛼4) = 0.60 ;
𝑆3(𝛼1) = 𝑆3(𝛼2) = 𝑆3(𝛼3) = 𝑆3(𝛼4) = −0.20 ;
𝑆4(𝛼1) = 𝑆4(𝛼2) = 𝑆4(𝛼3) = 𝑆4(𝛼4) = 0.00 ;
𝑆5(𝛼1) = −0.120, 𝑆5(𝛼2) = −0.118, 𝑆5(𝛼3) = −0.110, 𝑆5(𝛼4) =

−0.098;
These four IVIFSs cannot be distinguished using the measures 𝑆1 to

𝑆4. Two IVIFSs are seen to have identical measures if the interval means
of 𝜇 and the interval means of 𝜈 are the same. For the measure 𝑆5,
𝛼4 > 𝛼1 which is completely counter-intuitive. These functions are thus
not efficient in differentiating IVIFSs. A new scoring function capable
of discriminating between two IVIFS can be seen in Section 3.7.

3. Decision making framework

In this framework, a decision making takes place in an interval-
valued intuitionistic fuzzy environment. With the input uncertainties
and the human fuzzy processing, it is more advisable to have interval
range values than an absolute value. In a scenario of multi-judge,
multi-criteria decision making, it is improbable to reach an unanimous
decision every single time. Each judge will have his/her own sense
of judgment and the decision making may vary from one to another.
Therefore, in this paper, independent assessments by each judge are
considered for evaluation.

3.1. Decision maker’s assessment

Let there be 𝑛 alternatives 𝐴1, 𝐴2,… , 𝐴𝑛 and 𝑞 decision makers (DM)
labeled as 𝐷𝑀1, 𝐷𝑀2,… , 𝐷𝑀𝑞 respectively. The decision makers as-
sess each alternative based on 𝑚 criteria (𝐶1, 𝐶2,… , 𝐶𝑚) independently.
During an assessment,both membership and non-membership values
are assigned to the alternative for each criterion. The membership
values are represented by 𝜇 = [𝜇, 𝜇] where 𝜇 is the lower boundary
and 𝜇 is the upper boundary. Similarly, the non-membership values are
represented by 𝜈 = [𝜈, 𝜈]. 𝐴𝑖𝐶𝑗 [𝜇, 𝜇] indicates the degrees to which the
alternative 𝐴𝑖 satisfies the criterion 𝐶𝑗 . 𝐴𝑖𝐶𝑗 [𝜈, 𝜈] indicates the degrees
to which the alternative 𝐴𝑖 does not satisfy the criterion 𝐶𝑗 . The values
for 𝜇 and 𝜈 can range from 0 to 1, adhering to the conditions of an
IVIFS. Each criterion is judged independently of the other. With the
given interval-valued membership and non-membership degrees, the
IVIFS assessment table is formed for each decision-maker separately.

3.2. Selection approach

In practical situations, it is common that decision-makers have
some degree of hesitation in making a decision. This indecisiveness
is represented by the hesitancy factor [ℎ, ℎ]. Hesitation is an integral
part of human decision making. Despite having hesitancy to a certain
degree, decisions have to be made for actions to be taken. Decision
results can vary depending on the ideology of the approach taken. A
generalized fuzzy technique for order preference similarity to an ideal
solution was proposed by Dwivedi et al. (2018) where a performance
matrix from an IVIFS is obtained using 𝜇 = (1 − 𝜆)𝜇 + 𝜆𝜇 and 𝜈 =
𝜆𝜈 + (1 − 𝜆)𝜈. The method is sensitive to the preference parameter 𝜆

hich is the degree of optimism but does not consider the influence
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Fig. 1. The framework of decision making of the proposed system, from the evaluation of decision-makers (DM) on alternatives and criteria to the subject’s ranking determination.
The edges of green, purple and red colors represent the flow of information related to optimistic, pessimistic, and neutral ranking, respectively.
of hesitation. Yager (2002) considered optimism and pessimism as two
extremes on one dimension continuum whereas other studies (Conway
et al., 2008; Nicholls et al., 2008) suggested optimism and pessimism
exist in divergent dimensions. Having one is not equivalent to the lack
of another, membership and non-membership are not complementary.
They are independent and should be dealt with separately when both
are present simultaneously (Raufaste & Vautier, 2008).

3.2.1. Optimistic
In the optimistic approach, the notion of decision making is more

inclined to the degree of membership. Having a membership degree,
𝜇=1 is the most idealistic situation for optimism. We here estimate the
confident membership by assuming 𝜈=0 and completely diminishing
the hesitancy factor associated with the evaluation. Eq. (15) gives the
Confident Membership Estimate (CME):

𝐶𝑀𝐸 =
𝜇 + 𝜇 − ℎ − ℎ

2
(15)

CME will help in constructing a table called Optimistic Table where
the emphasis is given to the criterion’s degree of memberships. With
the available assessment tables, we estimate the confident membership
for each decision-maker in assessing 𝐴𝑖𝐶𝑗 . Each criterion of every
alternative is evaluated by 𝑞 different decision-makers. For a given
alternative and criteria, the selected membership and non-membership
values for the Optimistic Table belong to the decision-maker with the
highest confident membership estimate, i.e,

max
(

𝐶𝑀𝐸𝑘(𝐴𝑖𝐶𝑗 )
)

∀𝑘 ∈ {1, 2,… , 𝑞}

If two or more decision-makers have equal confident membership
estimates for 𝐴𝑖𝐶𝑗 , then the one having a greater 𝜇 is chosen. In case of
further deadlock, the membership and non-membership values selected
for the Optimistic Table belong to the decision-maker having a higher
𝜇.
4

3.2.2. Pessimistic
In the pessimistic approach, the idea of decision making is more

inclined to the degree of non-membership. Having a non-membership
degree, 𝜈=1 is the most idealistic situation for pessimism. We here
estimate the confident non-membership by assuming 𝜇=0 and com-
pletely diminishing the hesitancy factor associated with the evaluation.
Eq. (16) gives the Confident Non-membership Estimate (CNE):

𝐶𝑁𝐸 =
𝜈 + 𝜈 − ℎ − ℎ

2
(16)

CNE helps in constructing a table called Pessimistic Table where
the emphasis is given to the criterion’s degree of non-memberships.
With the available assessment tables, we estimate the confident non-
membership for each decision-maker in assessing 𝐴𝑖𝐶𝑗 . Each criterion
of every alternative is evaluated by 𝑞 different decision-makers. For
a given alternative and criteria, the selected membership and non-
membership values for the Pessimistic Table belong to the decision-
maker with the highest confident non-membership estimate i.e,

max
(

𝐶𝑁𝐸𝑘(𝐴𝑖𝐶𝑗 )
)

∀𝑘 ∈ {1, 2,… , 𝑞}

If two or more decision-makers have equal confident non-
membership estimates for 𝐴𝑖𝐶𝑗 , then the one having a greater 𝜈 is cho-
sen. In case of further deadlock, the membership and non-membership
values selected for the Pessimistic Table belong to the decision-maker
having a higher 𝜈.

3.2.3. Neutral
In this approach, the notion of decision making is neutral. Emphasis

is neither given to the degree of membership nor to the degree of
non-membership. The Neutral Table is constructed by averaging using
mean. Each criterion of every alternative is evaluated by 𝑞 different
decision-makers. For a given alternative and criteria, the membership
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and non-membership values for the Neutral Table are obtained using:

𝜇
𝑖𝑗
=

∑𝑞
𝑘=1 𝐴𝑖𝐶𝑗 (𝜇)𝑘

𝑞
𝜇𝑖𝑗 =

∑𝑞
𝑘=1 𝐴𝑖𝐶𝑗 (𝜇)𝑘

𝑞
(17)

𝜈𝑖𝑗 =
∑𝑞

𝑘=1 𝐴𝑖𝐶𝑗 (𝜈)𝑘
𝑞

𝜈𝑖𝑗 =
∑𝑞

𝑘=1 𝐴𝑖𝐶𝑗 (𝜈)𝑘
𝑞

(18)

For all the approach tables, the hesitancy factor can be obtained using
Eq. (3) and Eq. (4).

3.3. Entropy

Entropy indicates the intrinsic order of a criterion. In this paper,
we extend the entropy measure proposed by Zhang et al. (2019) to an
interval-valued intuitionistic fuzzy environment.

For criterion 𝑗 and alternative set 𝑖 (𝑖 = 1, 2,… , 𝑛), entropy 𝐸 is:

𝐸𝑗 =
1
𝑛

𝑛
∑

𝑖=1
cos

(

(

𝜇
𝑖𝑗
+ 𝜇𝑖𝑗 − 𝜈𝑖𝑗 − 𝜈𝑖𝑗

2
)(

1 − 1
2
(
ℎ2𝑖𝑗 + ℎ

2
𝑖𝑗

2
)
)𝜋
2

)

(19)

Further calculation of entropy weight (𝛽) for criteria set 𝑗 (𝑗 =
1, 2,… , 𝑚) is done using:

𝛽𝑗 =
1 − 𝐸𝑗

∑𝑚
𝑗=1(1 − 𝐸𝑗 )

(20)

Each chosen approach will have its own entropy weights for the
riteria. The higher the entropy of a criterion, the lesser the entropy
eight associated with it.

.4. Comprehensive weight

Before assessing the alternatives, a decision-maker collectively as-
ign weightage to each criterion (𝛼1, 𝛼2, ⋯, 𝛼𝑚). The assigned weights
re subjective to decision-makers whereas the obtained entropy weights
𝛽1, 𝛽2, ⋯, 𝛽𝑚) hold to the objective of the selected approach in decision
aking.

Comprehensive weight (𝑤) for criteria 𝑗 is computed using:

𝑗 =
𝛼𝑗𝛽𝑗

∑𝑚
𝑗=1 𝛼𝑗𝛽𝑗

(21)

his integrates the criterion subjectivity and objectivity into the deci-
ion making process.

.5. Aggregation

Intuitionistic fuzzy aggregation operators were introduced by Xu
2007) and soon after uncertain dynamic intuitionistic fuzzy weighted
veraging (UDIFWA) operator was put forth by Xu and Yager (2008).
sing the same, all the criteria of an alternative 𝐴𝑖 are aggregated here.

𝑖[𝐶1, 𝐶2,… , 𝐶𝑚] = 𝑤1𝐶1 ⊕𝑤2𝐶2 ⊕⋯⊕𝑤𝑚𝐶𝑚

This aggregation operation can be better rewritten as:

𝑖(𝐶1, 𝐶2,… , 𝐶𝑚) =
(

[1 −
𝑚
∏

𝑗=1
(1 − 𝜇

𝑖𝑗
)𝑤𝑗 , 1 −

𝑚
∏

𝑗=1
(1 − 𝜇𝑖𝑗 )

𝑤𝑗 ], [
𝑚
∏

𝑗=1
(𝜈𝑖𝑗 )

𝑤𝑗 ,

𝑚
∏

𝑗=1
(𝜈𝑖𝑗 )

𝑤𝑗 ], [
𝑚
∏

𝑗=1
(1 − 𝜇𝑖𝑗 )

𝑤𝑗 −
𝑚
∏

𝑗=1
(𝜈𝑖𝑗 )

𝑤𝑗 ,
𝑚
∏

𝑗=1
(1 − 𝜇

𝑖𝑗
)𝑤𝑗 −

𝑚
∏

𝑗=1
(𝜈𝑖𝑗 )

𝑤𝑗 ]
)

(22)

here 𝑤𝑗 is the comprehensive weight of respective criterion 𝐶𝑗 , 𝑗 =
1, 2,… , 𝑚}, 𝑤𝑗 ∈ [0,1] and ∑𝑚

𝑗=1 𝑤𝑗 = 1.
The selected approach table is weighted with its own respective

omprehensive weights of the criteria. This aggregation operator helps
o wholly evaluate an alternative with respect to each criterion. Zhou
nd Xu (2017) showed that the values aggregated by fuzzy weighted
veraging operators are always greater than those obtained by fuzzy
eighted geometric operators and also introduced extreme aggrega-

ion operators. Decision making with these operators involve a lot of
arameter specifications and hence is not employed in the framework.
5

.6. OPN approach

OPN approach associates itself with the three different ideologies of
ecision making, namely Optimistic, Pessimistic, and Neutral. A gener-
lized formula for aggregating IVIFS tables attained by 𝑑 distinctive
deologies is given as:

DIFWA(𝐴𝑖(𝑡1), 𝐴𝑖(𝑡2),… , 𝐴𝑖(𝑡𝑑 ))

=
(

[1 −
𝑑
∏

𝑧=1
(1 − 𝜇

𝑡𝑧𝑖
)1∕𝑑 , 1 −

𝑑
∏

𝑧=1
(1 − 𝜇𝑡𝑧𝑖)

1∕𝑑 ],

[
𝑑
∏

𝑧=1
(𝜈𝑡𝑧𝑖)

1∕𝑑 ,
𝑑
∏

𝑧=1
(𝜈𝑡𝑧𝑖)

1∕𝑑 ], [
𝑑
∏

𝑧=1
(1 − 𝜇𝑡𝑧𝑖)

1∕𝑑

−
𝑑
∏

𝑧=1
(𝜈𝑡𝑧𝑖)

1∕𝑑 ,
𝑑
∏

𝑧=1
(1 − 𝜇

𝑡𝑧𝑖
)1∕𝑑 −

𝑑
∏

𝑧=1
(𝜈𝑡𝑧𝑖)

1∕𝑑 ]
)

(23)

here 𝐴𝑖 is the alternative and 𝑡𝑧 is the selected approach table. This
ssimilates the different mindsets into one.

.7. Measuring function and ranking

Measure is an evaluation tool for interpreting and discerning ele-
ents. Here, we introduce a new measuring function called Measured
embership Score (MMS). The MMS values are calculated using the

pper and lower bounds of the membership degrees and the hesitancy
actors. It is a cumulative likelihood representation of something oc-
urring. For a selected approach IVIFS table, MMS for an alternative is
omputed using:

𝑀𝑆(𝐴𝑖) = min
[

𝜇
𝑖
(1 + ℎ𝑖) , 𝜇𝑖(1 + ℎ𝑖)

]

(24)

This measuring score function is a global evaluation of each alter-
native. The alternatives are ranked based on their MMS. The greater
the MMS is, the more preferred the alternative.

The properties of the proposed MMS function are as follows:
Property 1: If 𝜇 = 0 then MMS = 0
Property 2: If 𝜇 = 𝜇 = 1 then MMS = 1
Property 3: If [ℎ, ℎ] = [0, 0] then MMS = 𝜇
Property 4: For any IVIFN

(

[𝜇, 𝜇], [𝜈, 𝜈]
)

, MMS ∈ [0, 1]
A diagrammatic description of the decision-making framework is

given in Fig. 1.

4. Discussion and evaluation

IVIFSs are effective in tackling uncertainty and inconsistency oc-
curring in the process of decision making. Given an IVIFS, it can
be seen to belong inside the region of the triangle ONM (Fig. 2). It
presents a geometrical representation of decision making in the IVIFS
environment. 𝑀 is the conceptually the most affirmative point as 𝑢 = 1,
𝑣 = ℎ = 0. 𝑁 is the most unfavorable point with 𝑣 = 1, 𝑢 = ℎ = 0.
Point O is the most indecisive point as ℎ = 1 and 𝑢 = 𝑣 = 0. Line 𝑀𝑁
represents the IVIFS which is absolutely confident and has no scope of
indecisiveness as ℎ = 0. The closer the line parallel to 𝑀𝑁 , the higher
the confidence. All points on a line paralleled to 𝑀𝑁 share the same
hesitancy factor.

Each of the differently shaded region in Fig. 2 represents a region
where an IVIFS would tend to lie when taking a different mindset
approach for decision making. For the optimistic region, focus is on the
membership degree having an increasing tendency where 𝜇 can range
from 𝜇 to 1, while 𝜈 is restricted to [0, 𝜈]; whereas for the pessimistic
region, focus is on the non-membership degree having an increasing
tendency where 𝜈 can range from 𝜈 to 1, while 𝜇 is restricted to [0,
𝜇]. The mutually neutral region favor the upper limits of membership
and non-membership degrees with the lower bound of hesitancy free
to increase any of the two belief degrees. The triangle formed by the
yellow dotted lines and line segment of 𝑀𝑁 represents an unbiased
neutral region.
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Fig. 2. Decision Making in Interval-valued Intuitionistic Fuzzy Environment. Here, 𝜇 and 𝜇 are lower and upper bound of membership degree respectively, whereas 𝜈 and 𝜈 are
lower and upper bound of non-membership degree respectively.
The IVIFN region is shared by impartial optimistic region as well as
the impartial pessimistic region. The impartial optimistic region holds
the non-membership degree within its given range [𝜈, 𝜈], and member-
ship degree is formed by adding the entire or portion of hesitancy factor
to it. Similarly, the impartial pessimistic region holds the membership
degree within its given range [𝜇, 𝜇] and the non-membership degree is
formed by adding the entire or portion of hesitancy factor to it.

4.1. Extended entropy and its comparison

The smaller the area of the triangle formed by the IVIFS, the more
conducive it is for estimation. This measure of area is taken into
consideration while calculating the entropy of IVIFS. For a given IVIFS,
ℎ and ℎ are the two extremes which will construct the occupied space.
The extended entropy measure we proposed considers the hesitancy
factor as well as employs the difference between membership and non-
membership degrees, which is seen to be an integral part of most
entropy methods. Using the two facilitates in capturing the fuzziness
as well as the intuition in decision making. Concurrently, the cosine
function helps in restraining the entropy measurements to [0,1]. When
the difference between membership and non-membership degrees is
equivalent for two IVIFSs, then the one with a higher hesitancy factor
ends up having a greater entropy score.

Szmidt and Kacprzyk (2001) introduced entropy to intuitionistic
fuzzy sets and laid out axiomatic properties it needs to fulfill. A function
𝐸 is said to be an entropy measure of an IVIFS 𝐴 = {(𝑥𝑖,𝑀𝐴(𝑥𝑖), 𝑁𝐴(𝑥𝑖))
|𝑥𝑖 ∈ 𝑋}, where 𝑀𝐴(𝑥𝑖) = [𝜇

𝐴
(𝑥𝑖), 𝜇𝐴(𝑥𝑖)] and 𝑁𝐴(𝑥𝑖) = [𝜈𝐴(𝑥𝑖), 𝜈𝐴(𝑥𝑖)]

if it fulfills the following properties:
(1) 𝐸(𝐴) = 0 iff 𝐴 is a crisp set
(2) 𝐸(𝐴) = 1 iff 𝑀𝐴(𝑥𝑖) = 𝑁𝐴(𝑥𝑖)
(3) 𝐸(𝐴) = 𝐸(𝐴𝑐 )
(4) 𝐸(𝐴) ≤ 𝐸(𝐵), for ∀𝑥𝑖 ∈ 𝑋 iff 𝑀𝐴

(

𝑥𝑖
)

≤ 𝑀𝐵
(

𝑥𝑖
)

and 𝑁𝐴
(

𝑥𝑖
)

≥
𝑁𝐵

(

𝑥𝑖
)

for 𝑀𝐵
(

𝑥𝑖
)

≤ 𝑁𝐵
(

𝑥𝑖
)

or 𝑀𝐴
(

𝑥𝑖
)

≥ 𝑀𝐵
(

𝑥𝑖
)

and 𝑁𝐴
(

𝑥𝑖
)

≤
𝑁

(

𝑥
)

for 𝑀
(

𝑥
)

≥ 𝑁
(

𝑥
)

6

𝐵 𝑖 𝐵 𝑖 𝐵 𝑖
The extended entropy formula, Eq. (19) satisfies all the above
conditions of an intuitionistic fuzzy environment. Table 1 shows a
comparison between existing entropy measures and the one we pro-
posed, 𝐸𝑁𝐸𝑊 . This comparison demonstrate that 𝐸𝑁𝐸𝑊 is able to
differentiate given IVIFSs while the existing entropy measures may
not. For a chosen entropy measure, the IVIFSs where the distinction
has not been made are highlighted in a similar color. For a given
case A([0.4,0.5],[0.4,0.5]) where membership degree is the same as
non-membership degree, 𝐸𝐽𝑌 (𝐴) = 𝐸𝑊𝐶 (𝐴) = 𝐸𝐿𝐽 (𝐴) = 𝐸𝑊𝑍 (𝐴) =
𝐸𝑁𝐸𝑊 (𝐴) = 1.00 in accordance to the above-defined axiomatic prop-
erties of entropy measure whereas 𝐸𝑍𝑋 (𝐴) = 0.90 as it is based on
distance-based definitions.

These entropy measures provided the reliability of information but
is not a rational choice for ranking of IVIFNs. To say the least, an IVIFN
and its complement will bear the same entropy value and hence cannot
be differentiated.

4.2. New measuring function and its comparison

Chen et al. (2012) proposed a ranking method to overcome the
drawback of the accuracy function of Ye (2009), and later (Wu &
Chiclana, 2014) presented a risk attitudinal ranking method for IVIFNs
based on novel score and accuracy expected functions. Garg (2016a)
introduced an improvised score function for IVIFSs incorporating a
weighted hesitancy factor:

𝐺𝐼𝑆(𝛼) =
𝜇 + 𝜇

2
+ 𝑘1𝜇(1 − 𝜇 − 𝜈) + 𝑘2𝜇(1 − 𝜇 − 𝜈) (25)

Interval-valued Pythagorean fuzzy environment was explored by Garg
(2016b) and a novel accuracy function for multiple-criteria decision-
making (MCDM) was proposed. This method takes into account the
degree of hesitation as in Eq. (26) :

𝑀(𝛼) =
𝜇2 −

√

1 − 𝜇2 − 𝜈2 + 𝜇2 −
√

1 − 𝜇2 − 𝜈2

(26)

2
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Table 1
Entropy measure comparison. In this table, A1 to A7 represents 7 cases of IVIFN,
whereas 𝐸𝐽𝑌 , 𝐸𝑊𝐶 , 𝐸𝐿𝐽 , 𝐸𝑍𝑋 , 𝐸𝑊𝑍 and 𝐸𝑁𝐸𝑊 represent six different entropy
measures, i.e. Jun Ye’s Entropy (Ye, 2010), Wei et al. entropy (Wei et al., 2011),
Liu Jing’s entropy (Jing, 2013), Zhang, Xing et al. entropy (Zhang et al., 2014), Wei
and Zhang’s entropy (Wei & Zhang, 2015) and our proposed entropy.

IVIFN 𝐸𝐽𝑌 𝐸𝑊𝐶 𝐸𝐿𝐽 𝐸𝑍𝑋 𝐸𝑊𝑍 𝐸𝑁𝐸𝑊

A1([0.1,0.2],[0.3,0.4]) 0.96 0.76 0.87 0.50 0.98 0.96
A2([0.4,0.5],[0.4,0.5]) 1.00 1.00 1.00 0.90 1.00 1.00
A3([0.5,0.5],[0.0,0.0]) 0.74 0.50 0.67 0.50 0.87 0.77
A4([0.5,0.5],[0.1,0.1]) 0.83 0.56 0.71 0.60 0.90 0.83
A5([0.5,0.5],[0.3,0.3]) 0.96 0.71 0.83 0.80 0.97 0.95
A6([0.6,0.6],[0.2,0.2]) 0.83 0.50 0.67 0.60 0.87 0.81
A7([0.7,0.7],[0.2,0.2]) 0.74 0.38 0.55 0.50 0.76 0.71

Here, we showcase the proposed framework and measuring func-
ion for decision making with a practical example from a real-world
cenario. Comparison is made with some of the approaches as well as
alidation is done for the reliability and effectiveness of the method.
Example 1: An investor wants to make an investment and has four

alternatives to choose from: Car company (A1); Food company (A2);
Computer company (A3); Arms company (A4). The decision must be
based on four major criteria:(C1) High growth; (C2) Low Risk; (C3)
Social impact; (C4) Environment impact. The possible alternatives are
assessed w.r.t all the mentioned criteria in an interval-valued intuition-
istic fuzzy environment by an expert. The assessment is provided in the
form of a decision matrix D given as in Box I.

The weights given to C1, C2, C3, C4 are 0.15, 0.25, 0.35 and
0.25 respectively. The proposed approach is utilized to find the best
alternative. Here the decision-making is done by a single expert, there-
fore the optimistic, pessimistic, and neutral approaches represent the
same IVIFS table as obtained by the decision maker’s assessment. Each
alternative is aggregated, scored, and ranked. The ranking obtained is
𝐴2 > 𝐴4 > 𝐴3 > 𝐴1 making 𝐴2, computer company the best alternative
or investment.

Table 2 provides a ranking comparison overview of different ap-
roaches with various measuring functions for the above-mentioned
ecision making problem. The best and the worst cases obtained by
he proposed approach concurs with the result of other approaches.

.3. Validation of the framework

To evaluate the validity of the MCDM method and consistency in the
anking, Wang and Triantaphyllou (2008) established three criteria:

Criteria 1 - The method should not alter the ranking index of the
est alternative when one of the remaining alternatives is replaced with a
orse alternative. Suppose a non-optimal alternative 𝐴𝑖 is replaced by

another alternative 𝐴′
𝑖 which is less optimal than 𝐴𝑖 and the ranking of

alternatives is done again, then the index of the best alternative should
not change.

Criteria 2 - Transitivity property must hold good for the ranking of the
alternatives. Assuming the MCDM problem is randomly broken down
into smaller problems consisting of two alternatives each, then the
ranking obtained must satisfy the transitivity property. Say, if 𝐴2 > 𝐴1
nd 𝐴 > 𝐴 then 𝐴 > 𝐴 must hold.
7

1 3 2 3 w
Criteria 3 - If the decision-making problem is decomposed into smaller
ub-problems and the MCDM method is used for ranking the alternatives
hen the combined ranking of the sub-problems should be identical to the
anking of the original un-decomposed problem.

The proposed method is checked for the three criteria and is seen
o be validated and have consistency in the ranking.
Checking Criteria 1: The non-optimal alternative 𝐴1 is replaced with

worse alternative 𝐴1′ having ([0.2,0.3], [0.4,0.5]) assigned to 𝐶1
nd ([0.3,0.5], [0.2,0.4]), ([0.1,0.2], [0.6,0.7]), ([0.3,0.4], [0.3,0.5])
ssigned to 𝐶2, 𝐶3, 𝐶4 respectively. With the proposed method, the
valuated value of A1 tends to 0.3122. The new ranking order of the
lternatives becomes 𝐴2 > 𝐴4 > 𝐴3 > 𝐴1′. This new ranking is similar
o that with the previous and 𝐴2 remains the best alternative in both
ases.
Checking Criteria 2 and 3: Supposing, the problem is decomposed

nto smaller sub problems {𝐴1, 𝐴2, 𝐴3}, {𝐴1, 𝐴2, 𝐴4} and {𝐴2, 𝐴3, 𝐴4}
nd the proposed approach is applied, the obtained respective rankings
re {𝐴2 > 𝐴3 > 𝐴1}, {𝐴2 > 𝐴4 > 𝐴1}, {𝐴2 > 𝐴4 > 𝐴3}. When the
btained rankings are combined, it results in 𝐴2 > 𝐴4 > 𝐴3 > 𝐴1 which
s same as the original ranking.

xample 1. We present another example and compare the results ob-
ained from the framework with those from other existing approaches.
n this example, a real cloud computing service problem as used
n Düğenci (2016) is adapted. Four potential cloud services providers
re : SAP Sales on Demand (A1), Salesforce Sales Cloud (A2), Microsoft
ynamic CRM (A3), and Oracle Cloud CRM (A4). These cloud ser-
ice providers need to be evaluated for final selection. Four experts
valuated their services on five attributes namely performance(C1),
ayment(C2), reputation(C3), scalability(C4), and security(C5). The
xpert ratings on the services can be found in Düğenci (2016).

Table 3 gives a comparison for the service alternatives ranking
btained through various approaches. It can be clearly seen that the
anking given by the proposed method is in line with the other methods
xcept (Zhang et al., 2014), which has a reverse order of ranking as it
ssumes the middle point ([0.5, 0.5], [0.5, 0.5]) to be the equilibrium.
he proposed score and framework is therefore seen to produce a
table and reliable ranking of alternatives for decision making. The
ramework is also computationally more efficient than a model of linear
rogramming (Chen, 2016) where computation increases exponentially
ith sample size.

. Ranking of risky gait

.1. Participants

Thirty young, healthy college-goers (23 male and 7 female; age of
4 ± 2 years) took part in this study. Each of them was familiar with
echnology and asserted to using mobile phone while walking, on an
veryday basis. Written consent was provided by each participant and
rocedure approved by the ethics committee (IIRG004B-19HWB).

.2. Protocol

Qualisys motion capture system with six high-speed Oqus cameras

as set up across a 10 m long and 2 m wide walkway. Reflective
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Table 2
Ranking: MMS vs Other scoring functions. A1, A2, A3 and A4 are four cases presented in Example 1.

Ranking Evaluated value for the alternatives

A1 A2 A3 A4

Chen et al. (2012) A2 ≻ A4 ≻ A3 ≻ A1 0.1002 0.1734 0.1443 0.1636
Garg (2016a) A2 ≻ A3 ≻ A4 ≻ A1 0.3795 0.6615 0.5895 0.5260
Garg (2016b) A2 ≻ A3 ≻ A4 ≻ A1 −0.6763 −0.4115 −0.5350 −0.5398
Ye (2009) A2 ≻ A3 ≻ A4 ≻ A1 0.0627 0.3879 0.3106 0.0691
Proposed method A2 ≻ A4 ≻ A3 ≻ A1 0.3585 0.6551 0.5791 0.6096
𝑃

Table 3
Ranking comparison with existing approaches. In this table, A1,
A2, A3 and A4 represent the four cloud services discussed in
Example 1.

Service alternatives ranking

Düğenci (2016) A3 ≻ A1 ≻ A2 ≻ A4
Xu and Yager (2008) A3 ≻ A1 ≻ A2 ≻ A4
Zhang et al. (2014) A4 ≻ A2 ≻ A1 ≻ A3
Proposed method A3 ≻ A1 ≻ A2 ≻ A4

markers were attached to the subject’s hip, knee, heel, and toe of
both legs to capture their movement. Each subject walked across the
designated walkway ten times at their own comfortable pace. Subjects
were then required to use mobile phones and answer a set of questions
while walking. They were free to use the internet to find the answers.
This engaged their attention, leading to distraction from the primary
task of walking. The movements of the lower extremity were considered
for motion analysis. Gait cycles of the subjects were extracted from the
continuous motion.

5.3. Data

650 complete gait cycles for each of the two attempts were ana-
lyzed. A gait cycle starts with the heel strike of the right or left foot
and ends with the subsequent heel strike of the same foot. Temporal–
spatial features considered to be the most fundamental and reliable
gait features by practitioners and geriatrics alike (Preiningerova et al.,
2015) were used for gait analysis. Jhawar et al. (2016) used instance
selection for better identification of distorted gaits. Here, we focus on
observational gait characteristics, namely, stride length, step width, and
cadence. Stride length is the distance between two footsteps of the same
foot. The lateral separating distance between the centers of the two-
foot in the double limb part during the gait cycle is called step width.
Cadence is the rate at which a person moves, expressed in the number
of steps taken in a minute. Fig. 3 gives a visual representation of the
considered spatial gait features. Six out of the thirty participants were
found having distracted gaits. The medical experts classified them as
people with risky gaits and being more prone to falling, and selected
them to benefit from support intervention. It would not be a problem
for the experts to attend six patients and monitor their progress. But in
the case of a larger number of patients with risky gaits waiting to get
support intervention, it will get cumbersome and very difficult for the
medical experts to handle and prioritize them. To address this issue, a
grading system for risky gaits comes in handy to ease the situation. It
will help the doctors to attend the patients in the order of their risk of
falling.

5.4. Assessment

For risky gaits, which is a multi-attribute decision making problem,
let 𝑃 = {𝑃1, 𝑃2,… , 𝑃𝑛} be a set of 𝑛 patients and 𝐴 be a set of
𝑚 attributes (𝐴1, 𝐴2,… , 𝐴𝑚). A number of 𝑞 decision-makers make
their evaluations separately and are not influenced by others. For
each patient, all the attributes are evaluated independently and the
assessment is given in the form of membership and non-membership
8

Table 4
Decision maker 1 assessment table : 𝑃𝑖 , 𝑖 = {1, 2,… , 6} represent the six patients taking
the experiment, whereas 𝐴1, 𝐴2 and 𝐴3 represent three attributes being recorded. 𝜇
is the membership degree that a patient has the attribute, and 𝜈 is the membership
degree that a patient does not have the attribute.

𝐴1 𝐴2 𝐴3

𝜇 𝜈 𝜇 𝜈 𝜇 𝜈

𝑃1 0.5–0.6 0.1–0.2 0.5–0.6 0.1–0.2 0.5–0.7 0.0–0.1
𝑃2 0.5–0.6 0.3–0.4 0.3–0.6 0.2–0.4 0.5–0.7 0.1–0.2
𝑃3 0.7–0.9 0.0–0.1 0.8–0.9 0.1–0.1 0.7–0.8 0.0–0.1
𝑃4 0.3–0.4 0.4–0.5 0.4–0.5 0.4–0.5 0.4–0.6 0.3–0.4
𝑃5 0.7–0.8 0.1–0.2 0.7–0.8 0.1–0.2 0.6–0.7 0.1–0.2
𝑃6 0.6–0.8 0.0–0.2 0.7–0.8 0.1–0.2 0.4–0.6 0.1–0.3

Table 5
Decision maker 2 assessment table : 𝑃𝑖 , 𝑖 = {1, 2,… , 6} represent the six patients taking
the experiment, whereas 𝐴1, 𝐴2 and 𝐴3 represent three attributes being recorded. 𝜇
is the membership degree that a patient has the attribute, and 𝜈 is the membership
degree that a patient does not have the attribute.

𝐴1 𝐴2 𝐴3

𝜇 𝜈 𝜇 𝜈 𝜇 𝜈

𝑃1 0.4–0.6 0.1–0.3 0.4–0.5 0.1–0.2 0.4–0.7 0.2–0.3
𝑃2 0.4–0.6 0.3–0.4 0.5–0.6 0.2–0.4 0.5–0.6 0.2–0.3
𝑃3 0.7–0.8 0.0–0.1 0.8–0.9 0.0–0.1 0.8–0.9 0.0–0.1
𝑃4 0.4–0.5 0.4–0.5 0.2–0.4 0.5–0.6 0.5–0.6 0.3–0.4
𝑃5 0.6–0.7 0.1–0.2 0.5–0.7 0.1–0.3 0.5–0.6 0.2–0.4
𝑃6 0.6–0.8 0.1–0.2 0.4–0.6 0.1–0.3 0.5–0.7 0.2–0.3

Table 6
Decision maker 3 assessment table : 𝑃𝑖 , 𝑖 = {1, 2,… , 6} represent the six patients taking
the experiment, whereas 𝐴1, 𝐴2 and 𝐴3 represent three attributes being recorded. 𝜇
is the membership degree that a patient has the attribute, and 𝜈 is the membership
degree that a patient does not have the attribute.

𝐴1 𝐴2 𝐴3

𝜇 𝜈 𝜇 𝜈 𝜇 𝜈

𝑃1 0.3–0.4 0.2–0.3 0.35–0.65 0.10–0.25 0.35–0.55 0.15–0.35
𝑃2 0.55–0.65 0.25–0.35 0.35–0.55 0.3–0.4 0.55–0.65 0.10–0.25
𝑃3 0.60–0.75 0.10–0.25 0.7–0.8 0.0–0.1 0.75–0.85 0.0–0.1
𝑃4 0.35–0.45 0.35–0.45 0.4–0.6 0.3–0.4 0.4–0.6 0.1–0.4
𝑃5 0.5–0.7 0.1–0.2 0.65–0.75 0.1–0.2 0.6–0.7 0.1–0.2
𝑃6 0.6–0.7 0.0–0.2 0.5–0.6 0.1–0.2 0.5–0.6 0.1–0.2

Table 7
Confident membership estimates are computed using Eq. (15) after decision makers
𝐷𝑀1, 𝐷𝑀2 and 𝐷𝑀3 reviewed the attributes 𝐴1, 𝐴2 and 𝐴3 demonstrated on patients
1 to 𝑃6.

𝐴1 𝐴2 𝐴3

𝐷𝑀1 𝐷𝑀2 𝐷𝑀3 𝐷𝑀1 𝐷𝑀2 𝐷𝑀3 𝐷𝑀1 𝐷𝑀2 𝐷𝑀3

𝑃1 0.25 0.20 −0.05 0.25 0.05 0.175 0.25 0.35 0.15
𝑃2 0.45 0.35 0.50 0.20 0.40 0.25 0.35 0.35 0.375
𝑃3 0.65 0.55 0.525 0.80 0.75 0.55 0.55 0.75 0.65
𝑃4 0.15 0.35 0.20 0.35 0.15 0.35 0.35 0.45 0.25
𝑃5 0.65 0.45 0.35 0.65 0.40 0.55 0.45 0.40 0.45
𝑃6 0.50 0.55 0.40 0.65 0.20 0.25 0.20 0.45 0.25

intervals. Using the proposed framework, we rank the risky patients for
support care. The decision-makers providing their assessments on the
gaits are rehabilitation physicians. Here, we have three decision-makers
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Fig. 3. Gait spatial characteristics.
Table 8
Optimistic table. Three attributes, i.e. 𝐴1, 𝐴2 and 𝐴3 of patients, 𝑃1 to 𝑃6 are evaluated. For each patient and each attribute, the upper and lower bound of membership degrees
(𝜇 and 𝜇), the upper and lower bound of non-membership degrees (𝜈 and 𝜈), and the upper and lower bound of hesitancy factors (ℎ and ℎ) are presented.

𝐴1 𝐴2 𝐴3

𝜇 𝜇 𝜈 𝜈 ℎ ℎ 𝜇 𝜇 𝜈 𝜈 ℎ ℎ 𝜇 𝜇 𝜈 𝜈 ℎ ℎ

𝑃1 0.5 0.6 0.1 0.2 0.2 0.4 0.5 0.6 0.1 0.2 0.2 0.4 0.4 0.7 0.2 0.3 0.0 0.4
𝑃2 0.55 0.65 0.25 0.35 0.0 0.2 0.5 0.6 0.2 0.4 0.0 0.3 0.55 0.65 0.1 0.25 0.1 0.35
𝑃3 0.7 0.9 0.0 0.1 0.0 0.3 0.8 0.9 0.1 0.1 0.0 0.1 0.8 0.9 0.0 0.1 0.0 0.2
𝑃4 0.4 0.5 0.4 0.5 0.0 0.2 0.4 0.6 0.3 0.4 0.0 0.3 0.5 0.6 0.3 0.4 0.0 0.2
𝑃5 0.7 0.8 0.1 0.2 0.0 0.2 0.7 0.8 0.1 0.2 0.0 0.2 0.6 0.7 0.1 0.2 0.1 0.3
𝑃6 0.6 0.8 0.1 0.2 0.0 0.3 0.7 0.8 0.1 0.2 0.0 0.2 0.5 0.7 0.2 0.3 0.0 0.3
who assessed six patients based on three attributes, i.e. stride length
(𝐴1), step width (𝐴2) and cadence for their chances of falling (𝐴3).
The weights assigned to the attributes are (0.4,0.3,0.3) respectively.
The result of assessments are shown in Tables 4–6. The higher the
membership degree for an attribute, the more it indicates support for
the likelihood of falls in a given patient.

5.5. Approaches

5.5.1. Optimistic approach
In this approach, the focus is on an attribute’s membership degrees

which represents the likelihood of a patient being risky faller. With
Eq. (15), we calculate and present the CME of gait attributes for
all the three decision-makers in Table 7. These CME values help in
constructing the Optimistic Table. For a given patient and attribute,
the selected membership and non-membership values for Optimistic
Table (Table 8) belong to the decision-maker with highest CME, or
membership degree in case of a deadlock.

To illustrate, let us take the case of Patient 1 Attribute 1. The
CME of three decision-makers for the same are 0.25, 0.20 and −0.05
respectively. It is observed that 𝐷𝑀1 has the highest CME. The IVIFS
selected in this case for the optimistic table belongs to 𝐷𝑀1. Therefore,
([0.5,0.6],[0.1,0.2]) represents ([𝜇, 𝜇],[𝜈, 𝜈]).

Based on the Optimistic Table (Table 8), we calculate entropy
weights 𝛽 for the attributes which capture the objectivity of the ap-
proach. Using Eq. (19) and Eq. (20), we get 𝛽1 = 0.339, 𝛽2 = 0.356
and 𝛽3 = 0.305. Comprehensive weights 𝑤 for the attributes are then
obtained by Eq. (21). The obtained weights 𝑤1 = 0.41, 𝑤2 = 0.32 and
𝑤3 = 0.27 are coupled with their respective attributes in the Optimistic
Table. Aggregation operations are performed utilizing Eq. (22) for each
patient as to have a collective weighted representation for ranking. The
aggregated IVIFS for optimistic approach is seen in Table 9.

5.5.2. Pessimistic approach
In this approach, the focus is on an attribute’s non-membership

degrees which represents the likelihood of a patient not being risky
faller. With Eq. (16), we calculate and present the CNE of gait attributes
for all the three decision-makers in Table 10. These CNE values help in
constructing the Pessimistic Table. For a given patient and attribute,
the selected membership and non-membership values for Pessimistic
9

Table 9
Aggregated IVIFS for optimistic table. In this table, the upper and lower bound of
membership degrees (𝜇 and 𝜇), the upper and lower bound of non-membership degrees
(𝜈 and 𝜈), and the upper and lower bound of hesitancy factors (ℎ and ℎ) of each patient
(𝑃1 to 𝑃6) are aggregated.

𝜇 𝜇 𝜈 𝜈 ℎ ℎ

𝑃1 0.475 0.63 0.121 0.223 0.147 0.405
𝑃2 0.535 0.635 0.182 0.334 0.032 0.284
𝑃3 0.764 0.9 0.0 0.1 0.0 0.236
𝑃4 0.429 0.562 0.338 0.438 0.0 0.234
𝑃5 0.676 0.777 0.1 0.2 0.023 0.224
𝑃6 0.613 0.777 0.121 0.223 0.0 0.267

Table 10
Confident non-membership estimates are computed using Eq. (15) after decision makers
𝐷𝑀1, 𝐷𝑀2 and 𝐷𝑀3 reviewed the attributes 𝐴1, 𝐴2 and 𝐴3 demonstrated on patients
𝑃1 to 𝑃6.

𝐴1 𝐴2 𝐴3

𝐷𝑀1 𝐷𝑀2 𝐷𝑀3 𝐷𝑀1 𝐷𝑀2 𝐷𝑀3 𝐷𝑀1 𝐷𝑀2 𝐷𝑀3

𝑃1 −0.15 −0.10 −0.15 −0.15 −0.25 −0.15 −0.30 0.05 −0.05
𝑃2 0.25 0.20 0.20 0.05 0.15 0.15 −0.10 0.05 −0.05
𝑃3 −0.10 −0.15 0.025 0.05 −0.05 −0.15 −0.15 −0.05 −0.10
𝑃4 0.25 0.35 0.20 0.35 0.40 0.20 0.20 0.25 0.0
𝑃5 0.05 −0.05 −0.10 0.05 0.0 0.0 −0.05 0.15 −0.05
𝑃6 −0.10 0.0 −0.15 0.05 −0.10 −0.15 −0.10 0.10 −0.15

Table (Table 11) belong to the decision-maker with highest CNE, or
non-membership degree in case of a deadlock.

To illustrate, let us take the case of Patient 2 Attribute 2. The CNE of
three decision-makers for the same are 0.05, 0.15 and 0.15 respectively.
It is observed that 𝐷𝑀2 and 𝐷𝑀3 have obtained equal CNE value. Upon
checking 𝜈 for Patient 2 Attribute 2 in Tables 4–6, we found that both
decision-makers have 𝜈 = 0.4. Therefore, the selection is done based
on higher 𝜈. The IVIFS selected in this case for the Pessimistic Table
belongs to DM3, as 𝜈 = 0.2 for DM2 and 𝜈 = 0.3 for DM3. Accordingly,
([0.35,0.55],[0.3,0.4]) represents ([𝜇, 𝜇],[𝜈, 𝜈]).

Based on the Pessimistic Table (Table 11), we calculate entropy
weights 𝛽 for the attributes which capture the objectivity of the ap-
proach. Using Eq. (19) and Eq. (20), we get 𝛽1 = 0.296, 𝛽2 = 0.412
and 𝛽3 = 0.292. Comprehensive weights 𝑤 for the attributes are then
obtained by Eq. (21). The obtained weights 𝑤 = 0.36, 𝑤 = 0.37 and
1 2
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Table 11
Pessimistic table. Three attributes, i.e. 𝐴1, 𝐴2 and 𝐴3 of patients, 𝑃1 to 𝑃6 are evaluated. For each patient and each attribute, the upper and lower bound of membership degrees
(𝜇 and 𝜇), the upper and lower bound of non-membership degrees (𝜈 and 𝜈), and the upper and lower bound of hesitancy factors (ℎ and ℎ) are presented.

A1 A2 A3

𝜇 𝜇 𝜈 𝜈 ℎ ℎ 𝜇 𝜇 𝜈 𝜈 ℎ ℎ 𝜇 𝜇 𝜈 𝜈 ℎ ℎ

𝑃1 0.4 0.6 0.1 0.3 0.1 0.5 0.35 0.65 0.1 0.25 0.1 0.55 0.4 0.7 0.2 0.3 0.0 0.4
𝑃2 0.5 0.6 0.3 0.4 0.0 0.2 0.35 0.55 0.3 0.4 0.05 0.35 0.5 0.6 0.2 0.3 0.1 0.3
𝑃3 0.6 0.75 0.1 0.25 0.0 0.3 0.8 0.9 0.1 0.1 0.0 0.1 0.8 0.9 0.0 0.1 0.0 0.2
𝑃4 0.4 0.5 0.4 0.5 0.0 0.2 0.2 0.4 0.5 0.6 0.0 0.3 0.5 0.6 0.3 0.4 0.0 0.2
𝑃5 0.7 0.8 0.1 0.2 0.0 0.2 0.7 0.8 0.1 0.2 0.0 0.2 0.5 0.6 0.2 0.4 0.0 0.3
𝑃6 0.6 0.8 0.1 0.2 0.0 0.3 0.7 0.8 0.1 0.2 0.0 0.2 0.5 0.7 0.2 0.3 0.0 0.3
Fig. 4. Score Comparison for Different Approaches.
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able 12
ggregated IVIFS for pessimistic table. In this table, the upper and lower bound of
embership degrees (𝜇 and 𝜇), the upper and lower bound of non-membership degrees
𝜈 and 𝜈), and the upper and lower bound of hesitancy factors (ℎ and ℎ) of each patient
𝑃1 to 𝑃6) are aggregated.

𝜇 𝜇 𝜈 𝜈 ℎ ℎ

𝑃1 0.382 0.648 0.121 0.28 0.072 0.497
𝑃2 0.449 0.582 0.269 0.37 0.048 0.282
𝑃3 0.743 0.861 0.0 0.139 0.0 0.257
𝑃4 0.365 0.496 0.402 0.504 0.0 0.233
𝑃5 0.656 0.759 0.121 0.241 0.0 0.224
𝑃6 0.618 0.777 0.121 0.223 0.0 0.261

3 = 0.27 are coupled with their respective attributes in the Pessimistic
able. Aggregation operations are performed utilizing Eq. (22) for each
atient as to have a collective weighted representation for ranking. The
ggregated IVIFS for pessimistic approach is seen in Table 12.

.5.3. Neutral approach
In this approach, an attribute’s membership and non-membership

egrees are treated equally. Confidence estimations of the decision-
akers’ assessments are inessential. The Neutral Table is constructed

y averaging the assessments provided by decision-makers. For a given
atient and criterion, the membership and non-membership values for
he Neutral Table as shown in Table 13 are calculated using Eq. (17)
nd eq(18).
10
Based on the Neutral Table (Table 13), we calculate entropy weights
for the attributes which capture the objectivity of the approach.

sing Eq. (19) and Eq. (20), we get 𝛽1 = 0.326, 𝛽2 = 0.335 and 𝛽3 =
.339. Comprehensive weights 𝑤 for the attributes are then obtained
y Eq. (21). The obtained weights 𝑤1 = 0.39, 𝑤2 = 0.30 and 𝑤3

0.31 are coupled with their respective attributes in the Neutral
able. Aggregation operations are performed utilizing Eq. (22) for each
atient as to have a collective weighted representation for ranking. The
ggregated IVIFS for neutral approach is seen in Table 14.

.5.4. OPN approach
This approach is a fusion of Optimistic, Pessimistic, and Neutral

pproaches. These three approaches are aggregated using Eq. (23)
here each approach is given equal an weightage. The aggregated

VIFS table for the OPN approach is shown in Table 15.

.6. Scores and ranking

For each of the approaches, patients are evaluated based on their
ggregated IVIFSs by the new MMS function. The membership de-
rees affirms the importance of belief. For a decision to be made, the
esitancy in totality needs to be considered. Membership degrees ac-
umulated with hesitancy extremes for different approaches are shown
n Table 16. The minimum of two membership degrees, which acts as
he new MMS are summarized in Table 17, and graphical comparison
s highlighted in Fig. 4.

The patient with the highest MMS is at the greatest risk of falling.
he rankings of the patients under different approaches are presented
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Table 13
Neutral table. Three attributes, i.e. 𝐴1, 𝐴2 and 𝐴3 of patients, 𝑃1 to 𝑃6 are evaluated. For each patient and each attribute, the upper and lower bound of membership degrees (𝜇
nd 𝜇), the upper and lower bound of non-membership degrees (𝜈 and 𝜈), and the upper and lower bound of hesitancy factors (ℎ and ℎ) are presented.

A1 A2 A3

𝜇 𝜇 𝜈 𝜈 ℎ ℎ 𝜇 𝜇 𝜈 𝜈 ℎ ℎ 𝜇 𝜇 𝜈 𝜈 ℎ ℎ

𝑃1 0.4 0.53 0.13 0.27 0.2 0.47 0.42 0.58 0.1 0.22 0.2 0.48 0.42 0.65 0.12 0.25 0.1 0.46
𝑃2 0.48 0.62 0.28 0.38 0.0 0.24 0.38 0.58 0.23 0.4 0.02 0.39 0.52 0.65 0.13 0.25 0.1 0.35
𝑃3 0.67 0.82 0.03 0.15 0.03 0.3 0.77 0.87 0.03 0.1 0.03 0.2 0.75 0.85 0.0 0.1 0.05 0.25
𝑃4 0.35 0.45 0.38 0.48 0.07 0.27 0.33 0.5 0.4 0.5 0.0 0.27 0.43 0.6 0.23 0.4 0.0 0.34
𝑃5 0.6 0.73 0.1 0.2 0.07 0.3 0.62 0.75 0.1 0.23 0.02 0.28 0.57 0.67 0.13 0.27 0.06 0.3
𝑃6 0.6 0.77 0.03 0.2 0.03 0.37 0.53 0.67 0.1 0.23 0.1 0.37 0.47 0.63 0.13 0.27 0.1 0.4
Table 14
Aggregated IVIFS for neutral table. In this table, the upper and lower bound of
membership degrees (𝜇 and 𝜇), the upper and lower bound of non-membership degrees
𝜈 and 𝜈), and the upper and lower bound of hesitancy factors (ℎ and ℎ) of each patient
𝑃1 to 𝑃6) are aggregated.

𝜇 𝜇 𝜈 𝜈 ℎ ℎ

𝑃1 0.412 0.585 0.117 0.248 0.167 0.471
𝑃2 0.465 0.618 0.208 0.339 0.043 0.327
𝑃3 0.728 0.846 0 0.117 0.037 0.272
𝑃4 0.37 0.516 0.33 0.459 0.025 0.299
𝑃5 0.597 0.719 0.108 0.229 0.052 0.294
𝑃6 0.542 0.703 0.068 0.229 0.068 0.39

Table 15
OPN IVIFS table. The findings in Tables 9, 12 and 14 are aggregated using Eq. (23)
for each patient (𝑃1 to 𝑃6). Here, the upper and lower bound of membership degrees
(𝜇 and 𝜇), the upper and lower bound of non-membership degrees (𝜈 and 𝜈), and the
pper and lower bound of hesitancy factors (ℎ and ℎ).

𝜇 𝜇 𝜈 𝜈 ℎ ℎ

𝑃1 0.424 0.622 0.12 0.249 0.129 0.456
𝑃2 0.484 0.612 0.217 0.347 0.04 0.299
𝑃3 0.745 0.871 0.0 0.118 0.011 0.255
𝑃4 0.389 0.525 0.355 0.466 0.008 0.256
𝑃5 0.645 0.753 0.109 0.223 0.025 0.246
𝑃6 0.592 0.755 0.1 0.225 0.02 0.308

Table 16
Accumulated membership is computed for each approaches. 𝜇 and 𝜇 represent upper
and lower bound of membership degrees respectively, and ℎ and ℎ represent the upper
and lower bound of hesitancy factors respectively.

Optimistic Pessimistic Neutral OPN

𝜇(1 + ℎ) 𝜇(1 + ℎ) 𝜇(1 + ℎ) 𝜇(1 + ℎ) 𝜇(1 + ℎ) 𝜇(1 + ℎ) 𝜇(1 + ℎ) 𝜇(1 + ℎ)

𝑃1 0.667 0.723 0.572 0.695 0.606 0.683 0.617 0.702
𝑃2 0.687 0.655 0.576 0.610 0.617 0.645 0.629 0.636
𝑃3 0.944 0.900 0.934 0.861 0.926 0.877 0.935 0.881
𝑃4 0.529 0.562 0.450 0.466 0.481 0.529 0.489 0.529
𝑃5 0.827 0.795 0.803 0.759 0.773 0.756 0.804 0.772
𝑃6 0.777 0.777 0.779 0.777 0.753 0.751 0.774 0.770

Table 17
Score obtained by different approaches for patients 𝑃1 to 𝑃6.

Optimistic Pessimistic Neutral OPN

𝑃1 0.667 0.572 0.606 0.617
𝑃2 0.655 0.576 0.617 0.629
𝑃3 0.9 0.861 0.877 0.881
𝑃4 0.529 0.45 0.481 0.489
𝑃5 0.795 0.759 0.756 0.772
𝑃6 0.777 0.777 0.751 0.77

in Table 18. It is observed that for all approaches, P3 is considered the
patient with the highest risk of falling, and P4 has the lowest risk.

The patients can undergo rehabilitation according to their obtained
ranking from the selected approach. Having a shortfall of experts
in rehabilitation care to address a large population is a demanding
11
Table 18
Patient ranking by different approaches.

Optimistic Pessimistic Neutral OPN

Rank1 3 3 3 3
Rank2 5 6 5 5
Rank3 6 5 6 6
Rank4 1 2 2 2
Rank5 2 1 1 1
Rank6 4 4 4 4

situation. This sustainable ranking system will help in moderating and
organizing support intervention for patients with risky gaits.

6. Conclusion

The proposed approach driven system is capable to provide ranking
of risky gaits according to different attitudes instead of a single optimal
ranking. It captures the confidence of decision-makers in their assess-
ments. The method takes into consideration 𝜇, 𝜈, ℎ based on geometrical
meaning. Furthermore, the entropy measure for IVIFSs is extended and
a new measuring function. This method is computationally efficient
and effective for healthcare decision making even when the alternative
samples get large. The framework produces reliable results. However
it requires complete assessment information from the decision makers
and is not handy in case of missing data. Also, each criterion is assumed
to be independent of each other and the method does not consider any
interdependency between them. These limitations will be solved in the
future work.
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