
Received April 6, 2022, accepted April 26, 2022, date of publication May 2, 2022, date of current version May 16, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3171853

Parallel Sponge-Based Authenticated Encryption
With Side-Channel Protection and
Adversary-Invisible Nonces
MOHAMUD AHMED JIMALE 1, MUHAMMAD REZA Z’ABA 1,
MISS LAIHA BINTI MAT KIAH 1, (Senior Member, IEEE),
MOHD YAMANI IDNA IDRIS 1, (Member, IEEE), NORZIANA JAMIL 2,
MOESFA SOEHEILA MOHAMAD3, AND MOHD SAUFY ROHMAD4
1Department of Computer System and Technology, Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur 50603, Malaysia
2College of Computing and Informatics, Universiti Tenaga Nasional, Kajang, Selangor 43000, Malaysia
3Information Security Laboratory, MIMOS Berhad, Kuala Lumpur 57000, Malaysia
4Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia

Corresponding author: Mohamud Ahmed Jimale (mahamudjimale@gmail.com)

This work was supported by the Fundamental Research Grant Scheme (FRGS) of the Ministry of Higher Education, Malaysia, under
Project FP072-2019A (reference code FRGS/1/2019/ICT05/UM/02/1).

ABSTRACT Since its birth in 2000, authenticated encryption (AE) has been a hot research topic, and
many new features have been proposed to boost its security or performance. The Block cipher was the
dominant primitive in constructing AE schemes, followed by stream ciphers and compression functions
until the sponge construction emerged in 2011. Sponge-based AE schemes provide functional characteristics
such as parallelizability, incrementality, and being online. They also offer security features for protection
against active or passive adversaries. Currently, there exist parallel sponge-based AE schemes, but they are
not protected against simple power analysis (SPA) and differential power analysis (DPA). On the other
hand, sponge-based AE schemes that protect against such attacks are serial and cannot be parallelized.
Furthermore, sponge-based AE schemes handle the nonces in a way that could allow misuse. So, sponge-
based AE schemes that hide the nonce from adversaries are also an open problem. This work aims to bridge
these gaps by proposing a parallel sponge-based AE with side-channel protection and adversary-invisible
nonces (PSASPIN), using parallel fresh rekeying and the duplex mode of the sponge construction. A leveled
implementation is used to implement the key generation part using a pseudorandom function (PRF) based
on the Galois field multiplication. The data processing (the rekeyed) part is implemented using the sponge-
based duplex mode. Finally, the security proof of the proposed scheme is provided using game-based theory
according to the PRP/PRF switching lemma, and its performance is analyzed.

INDEX TERMS Integrity, authenticated encryption, authentication, confidentiality, CAESAR competition,
message authentication code, NIST-LW competition, cryptographic sponge function.

I. INTRODUCTION
A. BACKGROUND
The use of authenticated encryption (AE) schemes is a
crucial element for secure communications to protect the
confidentiality and integrity of messages. One of the most
popular protocols for protecting Internet communications, the
Transport Layer Security (TLS), has already phased out non-
AE schemes in its current version (1.3), first defined in 2018.

The associate editor coordinating the review of this manuscript and

approving it for publication was Diana Gratiela Berbecaru .

Encryption primitives such as block and stream ciphers
only provide confidentiality, i.e., messages are protected
from being viewed by unauthorized entities. Such primitives
cannot be simply used in secure communications since an
adversary can tamper with the encrypted message (i.e.,
ciphertext) without detection. In that regard, [1] and [2]
came up with the first AE schemes by integrating encryption
and message authentication code (MAC) schemes. AE with
associated data (AEAD) offers authentication of additional
unencrypted chunks of data [3], [4]. A classic case is a
network packet header, where only the message must be

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 50819

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

encrypted, but the header and the encrypted content must be
authenticated.

The combination of ciphers and MACs can be achieved
in several ways depending on the order in which encryption
and authentication algorithms are applied and are usually
termed the ‘‘generic compositions’’: (1) Encrypt-Then-MAC,
in which the message is first encrypted, and then the authen-
ticated tag is generated on encrypted message; (2) Encrypt-
and-MAC, in which the encryption and authentication
algorithms are independently applied and then combined;
and (3) MAC-then-Encrypt in which the authenticated tag is
generated on the plaintext, and then the tag and the message
are both encrypted.

Researchers proposed Dedicated AE schemes to resolve
efficiency problems associated with the generic composition
paradigm. Though the idea may have been studied earlier
in 1987 by Jansen and Boekee [5], the earliest practical
designs came at the beginning of the 21st century by
Katz and Yung [2] and then followed by other works [6]–[8].
This new type of dedicated AE scheme utilizes a single key,
in contrast to the generic composition approach requiring two
separate keys for encryption and authentication [9].

Since the seminal articles of Bellare and Namprempre
[1], [10], AE has experienced continuous improvements. The
belief that AE schemes could still be refined led to the
Competition for AE: Security, Applicability, and Robust-
ness (CAESAR) project, jointly commenced in 2013 by the
U.S. National Institute of Standards and Technology (NIST)
and Dan Bernstein. NIST declared the final CAESAR port-
folio (winners) in 2018, consisting of six schemes [11]–[16].
In the same year, triggered by the upsurge of the Internet-of-
Things (IoT), which mainly consists of resource-constrained
devices, the NIST solicited a call to standardize lightweight
AE schemes (hereafter referred to as NIST-LW schemes).
On March 29th, 2021, NIST announced ten finalists out of
the 32 candidates from Round 2 as the final portfolio for
standardization [17].

AE protects data confidentiality (or privacy) and
integrity/authenticity in two forms, each of which branches
into two notions of security. Confidentiality protects the
secrecy of information in case of the Chosen-plaintext attack
(IND-CPA) against passive adversaries and chosen ciphertext
attack (IND-CCA) against active adversaries [2], [18], [19].
Integrity guarantees that the messages are from legitimate
sources and have not been tampered with during transit at
rest. It protects the integrity of plaintext under the INT-PTXT
model and that of the ciphertext under the INT-CTXT model.

AE schemes rely on a user-supplied value (a nonce) as an
input to the AE scheme that is not supposed to be repeated
to encrypt different plaintexts under the same key [8], [19].
Nonces do not have to be random; they must be different for
each successive usage. An example is a counter that increases
with every new encryption [20].

The way that the nonces are generated or transmitted is
the responsibility of Application developers. However, such
practice is vulnerable to misuse because reusing nonces

(intentionally or otherwise) can have serious consequences.
The security of numerous applications and protocols has been
abused due to the mishandling of nonces. Examples of vio-
lated applications are Wired Equivalent Privacy (WEP) [21],
WinZip [22], Wi-Fi-protected access (WPA) 2 [23], and
Microsoft Office [24]. Consequently, it is necessary to have
AE schemes that provide an acceptable level of protection
in the face of such violations. To deal with this issue,
Rogaway and Shrimpton [25] proposed the notion of a nonce
misuse-resistant AE (MRAE) in 2006. An MRAE scheme
guarantees an acceptable level of security even though nonces
are reused [25].

Despite the benefits that nonces brought to strengthen
security, they have also become a tool to spoil nonce-based
encryption schemes’ protection; their security claims hold as
long as nonces are unique. The valid nonces format and the
way to transmit them also stimulated a hot debate among the
research community. Some claim nonces can be any text or
value, like counters, and can be sent in plain to the receiver
along with ciphertext [19], [26], [27]. On the other extreme,
[28] stated that sending nonces in clear or using values like
DeviceId could compromise security.

To bridge the gap between theory and practice of nonce
handling, Bellare et al. [28] proposed an approach to alleviate
the nonce handling burden and prevent its potential misuse
by hiding it like the message. Nonce-hiding eliminates the
nonces from the decryption algorithm of the schemes so that
the receiver does not have to worry about handling nonces
anymore. Finally, in [28], the authors demonstrated simple
ways to turn traditional nonce-based authenticated encryption
schemes into nonce-oblivious ones for the block cipher-based
AE schemes. However, nonce obliviousAE schemes based on
Sponge construction remain an open problem.

In addition to analyzing an AE scheme under the men-
tioned security models, attacks may benefit sideline informa-
tion from its implementation environment to break systems.
Such attacks, classified as Side-Channel Attacks (SCAs), are
particularly harmful when devices with sensitive information
like IoT devices, sensor network nodes, and smart cards
are in the hands of adversaries or are mounted where
they are accessible to the general public [29], [30], [31].
Cryptographic algorithms are notably weaker when used in
their lightweight form, as Ishai et al. [35] stated. Several tech-
niques are in place to prevent SCAs, including hiding [32],
masking [30], [33]–[35], and code morphing techniques [36].
However, re-keying is a less resource-intensive way to protect
against side-channel attacks (SCAs) [30], [37], [38]. In this
approach, the core ciphers are not used in their plain fashion,
but they are used with a subkey generation function that uses
the master key as input and generates session keys for data
processing. The core cipher, a block cipher, for example,
itself should be cryptographically strong. It should use the
subkeys sparingly (once or a few times) and needs to get
protected against Simple Power Analysis (SPA) only. On the
other hand, the sub-key generation function needs to be
heavily protected against SPA and stronger differential power

50820 VOLUME 10, 2022

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

analysis (DPA) but does not have to be cryptographically
strong. This concept is termed ‘leveled implementation’ as
stated by Abdalla et al. [37] and Mennink in [30].
AE schemes are built on some underlying constructions

or building blocks. Some of the most used building blocks
are block ciphers. Famous block ciphers to create AE
schemes include the AES [39], GIFT [40], and SKINNY [41].
Examples of Stream ciphers are in [42]. Permutation-based
structures use either dedicated or keyless permutations
as building-block primitive. Schemes in this class apply
techniques like XOR, Encrypt XOR, Encrypt Mix Encrypt
(EME), or variations of the Even-Mansour construction [43]
instead of permutations in a sponge-like mode. The sponge
construction is the most used form of keyless permutation.
Several schemes use permutations in a sponge-like mode
of operation, like the Keccak-f permutation used in the
SHA3 hash function, whereas others rely on dedicated
permutations [44]. There are also AE that are based on other
building blocks like hash function/compression function (CF)
like in [45], as there are schemes that use dedicated structures
as their underlying structure like those in some other
works [46], [47].

Besides the security-related characteristics, other essential
attributes boost the performance and efficiency of AE
schemes, like the following: Parallelizability, which indicates
the ability of a scheme to process the ith block independently
of the jth block [48]; Online, which indicates the ability
of a scheme to compute the ith ciphertext block having
processed the first i plaintext blocks and does not need to
know any plaintext beyond that block [49]; Inverse free:
A scheme is inverse free if the underlying primitive does
not require its inverse to perform encryption or decryption
[12], [13]. Incrementality is the ability of a scheme to
update parts altered only by the last activity, given a
previous ciphertext–tag pair (C, T) [50]. Being single-pass
renders a scheme more efficient and indicates that a scheme
processes the plaintext only at once to achieve confidentiality
and integrity [51], [52]. The lightweight property indicates
whether a scheme is intended for use in resource-constrained
environments [53], [54]. In the NIST-LW competition
dedicated to lightweight AE, several schemes ideal for use
with low resource devices were proposed, such as those in
[46], [55]. Nonce-obliviousness is another desirable feature
in situations where nonce mishandling can be expected.

B. CONTRIBUTIONS
The main contribution of this work is to propose and imple-
ment a sponge-based AE scheme with the following features:
nonce-oblivious, single-pass, nonce-misuse resistant (NMR),
parallelizable, incremental, and protection against SPA and
DPA using parallel fresh rekeying. This work is a comple-
mentary part of the continuous endeavors to enhance the AE
schemes in terms of security, performance, and efficiency
and is inspired by ISAP [56] and nonce-hiding schemes [57].
However, our scheme differs from those works in five main
ways: First, Parallel Sponge-based AE with Side channel

protection and Adversary invisible nonces (PSASPIN) is
parallel processing more than one data block simultaneously.
Second, it uses the leveled implementation differently. For
instance, ISAP uses sponge-based functions for rekeying and
data processing, whereas PSASPIN uses a key generation
PRF based onGalois Field multiplication. Although using the
same construction for rekeying and data processing reduces
the code size but might be susceptible to a chosen-plaintext
attack [58]. Third, PSASPIN is nonce-oblivious using a
modified syntax of NAE so that the decryption does not
take a nonce as an input parameter. Fourth, our scheme is
nonce-misuse resistant (NMR); that is, it provides the best
security possible in the case where the nonce is repeated.
Fifth, PSASPIN provides a security proof based on game-
based theory and PRP/PRF switching lemma [25], [46], [59].

C. ORGANIZATION OF THIS WORK
We describe related work in Section II. In section III,
we present a model of AE. Section IV is an introduction
to the PSASPIN AE scheme and its features. The security
analysis and proofs are given in Section V. We present the
performance analysis in In Section VI. Section VII is the
discussion part, and Section VIII concludes this work.

II. RELATED WORK
The security strength of cryptographic structures is typically
measured based on the assumptions that adversaries behave
according to security models defined with conditions and
limitations specified by the protocol [30], [60]. Furthermore,
adversaries traditionally took advantage of weaknesses in
the cryptographic algorithms to breach security. SCAs cast
doubt on the trustworthiness of this model [30]. These attacks
acquire side-line information about cryptographic functions
through passive attacks such as SPA [32], [61]–[63], DPA
[32], [64], timing patterns [64], power consumption [36] or
electromagnetic emissions [65]. In addition to the traditional
types mentioned above, SCAs have been evolving, and recent
works show more recent varieties based on techniques like
deep learning [60], Artificial Neural networks [66], and
thermal sensors [67].

SCAs take advantage of the relationship between the
cryptographic algorithms and the patterns of radiations from
the implemented devices. The main philosophy of these
attacks is deducing the secret key from their relationships
with the side channel signal behavior [32], [61]. SCAs are
especially dangerous when cryptographic devices are placed
where they can be physically accessible by adversaries.
Several mechanisms have been proposed in the literature for
protection against SCAs, including hiding [32] and masking
[30], [33]–[35]. However, these countermeasures imply
heavy performance penalties that are unbearable in resource-
constrained environments such as IoT devices and smart
cards. Fresh rekeying [37], [38] is a less resource-intensive
way to obtain SCA protection than other mentioned ways.
Furthermore, fresh rekeying provides protection against SCA
by preventing the attackers from obtaining the intermediate

VOLUME 10, 2022 50821

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

key materials by confining the use of every session key to
once or few times [37], [38], [58], [68].

Nonces are used in AE schemes to prevent predictability
and thus boost security as long as they are unique. The
Ideal way of using nonces (or IVs) is to make sure that
they are not repeated. Still, nonce repetition may occur
accidentally, deliberately, or due to device malfunctioning,
virtual machine cloning, or resetting source of generations
[69], [70]. Rogaway and Shrimpton in [25] proposed the SIV
model of operation. They came up with the idea of Nonce
Misuse Resistance Authenticated Encryption (NMRAE)
which provides the best security possible such that the
authenticity remains protected. Privacy is protected only to
the extent that some minimal information may be leaked,
whether two plaintexts are equal and revealed if the message
M, the header H, and the particular Nonce (IV) are repeated
together, which can happen with negligible probability.

In addition to their misuse through repetition, how nonces
are communicated stirred a hot debate within researchers.
The gap between the theory and practice of using nonces
and the concern of security breaches caused by wrongly
handling them was first raised in 2019 by Bellare, NG, and
Tackman [57]. They suggested a nonce hiding (NH) syntax
for AE schemes and concretized it in the context of Block
cipher-based schemes defining several options for processing
and transmitting the nonces and defining the level of security
they targeted (NH1 to NH5 transforms).

The sponge construction, first proposed by Bertone et al.
in [71], is an iterated cryptographic primitive for building
a function f with variable-length input and arbitrary output
length based on a fixed-length transformation or permu-
tation [71]. The sponge construction operates on a state
of b = (r + c) bits where r is called the bitrate and
c is the capacity [71]. The sponge first absorbs its input
block by block before processing and squeezing them out
afterward. The sponge construction is the most used form
of keyless permutation in AE. Sponges are also used for
other cryptographic purposes like re-seedable pseudorandom
generators and stream ciphers [44]. The sponge function is
used in several modes based on the functionality required; for
instance, the Duplex and its variant MonkeyDuplex [44], [72]
modes are mainly used to implement online, single-pass AE
schemes. The security of the Duplex construction can be
proved to be equivalent to the Sponge construction through
the Sponge/Duplex lemma in [71]. One of the winners in
the CAESAR competition, namely Ascon [12], was based
on Sponge construction, while five out of the ten finalists
in the NIST lightweight competition were based on sponge
construction, namely: Ascon [73], Elephant [74], ISAP [75],
Photon-Beetle [76], Xoodyak [77].

Besides the security features, functional characteristics
like parallelizability, incrementality, and being single-pass
are indispensable for AE schemes because they contribute
to the performance and efficiency of the schemes. Most
of the sponge-based AE schemes are serial in nature since
the original construction can not be parallelized at the

TABLE 1. Comparison of PSASPIN features to similar AE schemes (Y =

Yes, N = No).

algorithmic level. Still, several parallel AE sponge-based
AE schemes have been proposed based on the Duplex
construction. For instance, the AE schemes [78]–[80] provide
various degrees of parallelizability and incrementality, but
they are not protected against SCAs. Nonce obliviousness,
proposed by Bellare et al. [57], obviates program designers
from the burden of taking care of nonce transmission bymod-
ifying the traditional syntax of Nonce-Based Authenticated
Encryption (NBAE) so that the nonce is integrated into the
ciphertext and recovered at the destination. The nonce-hiding
transforms were proposed and concretized for block ciphers
in [57].

Cryptographic sponges offer a promising solution for pro-
tection against SCAs. Furthermore, the capacity parameter
of the sponge construction helps withstand SCAs [56], [81];
however, the Sponge-based AE schemes that are incremental
and single-pass do not provide protectionmechanisms against
SPA and DPA [79], [80]. On the other side, Sponge-based
AE schemes that offer protection against SPA and DPA
are neither parallelizable nor incremental. Examples of such
schemes are [75], [81], [82]. In addition to that, as far as the
authors know, there are no sponge-based AE schemes that
are nonce-oblivious and NMR. Table 1 compares existing
Sponge-based solutions to the proposed one (PSASPIN).

III. MODELING AUTHENTICATED ENCRYPTION
AEAD can be seen as a function that takes four arguments: a
secret key (K), a nonce (N), associated data (A), also called
a Header (H), and plaintext (P)—as input, and produces a
ciphertext (C) and an authentication tag (T) as an output

50822 VOLUME 10, 2022

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

FIGURE 1. A schematic structure of an authenticated encryption (AE)
scheme.

−E : K ×N ×H × P→ C|T—along with a decryption D :
K×N×H×C → P {⊥} . Separated AE with associated data
also features a verification algorithm V : K × N ×H × C ×
T → P{>,⊥}c. The encryption algorithm is EK (N ,H ,P) =
(C,T), and the decryption algorithm is DK (N ,H ,C) = P
if (C, T) is valid; otherwise, it outputs ⊥; the verification
algorithm is VK (N ,H ,C,T) =⊥ if a forgery is detected and
decryption fails [7], [8], [83]. Figure 1 illustrates a schematic
structure of an AE scheme.

IV. PARALLEL SPONGE-BASED AE WITH SIDE-CHANNEL
PROTECTION AND ADVERSARY INVISIBLE
NONCES (PSASPIN)
PSASPIN is an Authenticated encryption with associated
data based on the duplex mode of the sponge construction
protected against SPA and DPA using Parallel fresh re-
keying. It hides nonces from the adversary by taking a nonce
as part of the input to the encryption but omitting it from the
decryption. Nonces are encrypted, together with ciphertext,
extracted at the destination, and used in the decryption to
obtain plaintext. In that way, the nonce is invisible to the
adversary and alleviates the burden of nonce management
from the implementors and developers.

PSASPIN has the following desirable properties important
for AE schemes in terms of security, performance, and effi-
ciency: parallelizable, incremental, single-pass, side-channel
protected, and nonce-oblivious (preventing the adversary
from viewing/ accessing the nonces).

A. PARAMETERS
The following are the main parameters used in the encryption
and decryption algorithms of PSASPIN: Key size, block size,
Nonce size, and the Tag size are 128 bits, and the number of
rounds is eight rounds.

FIGURE 2. A high-level view of PSASPIN structure.

B. NOTATIONS
Here we introduce the notations used in this work. By K,
T, N, IV, we denote the key, the authentication tag, the
nonce, and the initialization vector, respectively. By M, C,
A, we denote the plaintext, the ciphertext, and the associated
data, respectively. By⊥ (bottom), wemean an Error or failure
of verification. By S, we denote the state of the sponge
construction, which is 320 bits. Sc stands for the internal state
(the capacity part), while Sr stands for the outer state (the
rate part). By P, we denote the Sponge permutation. By 0k

we mean an all 0-bit string of length k. By |X|, we indicate
the length of string X. By X||Y; we denote the string ‘X’
concatenated to the string ‘Y.’ By X ⊕ Y we denote the
XOR of ‘X’ and ‘Y’ strings. By dXek We denote a bitstring
X truncated to the most significant (last) k bits. By bXck,
we denote a bitstring X truncated to the least significant bit
(first) k bits.

C. PSASPIN AUTHENTICATED ENCRYPTION SCHEME
PSASPIN AE takes four parameters: A 128-bit secret
session K∗ derived from the master key K, an arbitrary
length plaintext message M, an arbitrary-length Associated
data A, and a public message number (nonce) 128-bit N.
The scheme also Takes a 128-bit Secret Message Number
nonce (SMN) in the encryption. The decryption takes A
128-bit secret session K∗ derived from the master key K,
cyphertext C, and an arbitrary-length Associated data A.
The scheme uses a modified syntax of NAE so that the
decryption does not take a nonce as an input parameter.
The scheme is based on the duplex mode of sponge
construction but uses fresh rekeying to get a fresh key for
every invocation of encryption/decryption and authentication
functions. A general scheme view is depicted in figure 2.
The encryption and decryption process of PSASPIN AE are
shown in figure 4 and figure 5, respectively.

D. PSASPIN PROCESSES
Several steps are necessary for PSASPIN to do its job, from
initialization and encryption/decryption to finalization and

VOLUME 10, 2022 50823

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

tag generation. In the initialization and finalization, Parallel
Fresh Rekeying (FRK) is called to feed the process with a
new session key.

1) INITIALIZATION
In the initialization process, the FRK is called. It takes a
master K and a Random IV and produces a fresh session key
Ks to protect the scheme against SPA/DPA. See algorithm 1 in
Appendix A for details of FRK. After generating the session
key, the shared state S is updated. The first Random IV is
generated at the source and securely shared after that and will
be incremented to keep the sides synchronized to the sponge
permutation P. A counter (Ctr) is generated to keep track of
the number of parallel threads incrementing by 1 with every
lane.

2) PROCESSING THE ASSOCIATED DATA
PSASPIN first breaks the Associated data message into r
bit block. Padding is done by appending ‘1’ and a minimum
number of ‘0’s to A so that its length is a multiple of the block
size r . If the AD block is empty, no padding is necessary. The
AD is processed one block of r bits at a time. A0||A1||

Ai||, |A| = r. Every block of A is XORed with the outer part
of the state (Sr), then it is concatenated with the inner part of
the state (Sc). The state is updated by the permutation P in the
following manner: S ← P((Sr ⊕ Ai) ‖Sc). After processing
the last Ai, a 1-bit domain separator is XORed with the state
S: S ← S ⊕ (0319‖1) to indicate the end of Associated Data
and plaintext parts and prevent attacks that change the roles
of Associated Data and plaintext blocks as in Ascon [73].

3) PROCESSING AND HIDING THE NONCE (SMN)
The concatenation of the first plaintext block (M0), the
first Associated Data Block (A0), and the Public Message
Number (N) is OXR-ed with the outer part of the state Sr ,
Sr ← Sr ⊕ (N‖A0‖M0), then the new nonce N1 is assigned
to the outer state Sr: N1← Sr , after that, the state is updated
in the following manner: Sr←Sr⊕(N1); S←P((Sr⊕N1)||Sc).
The new nonce N1 is a ciphertext of the original nonce and
will be XORed with the first block of the ciphertext in the
next stage.

4) PROCESSING THE PLAINTEXT (ENCRYPTION)
After breaking the plaintext message into blocks of size
r−bits, the first plaintext block (M0) is XORed with
Sr to produce an intermediate ciphertext block (CM0):
Sr ←Sr⊕M0; CM0 ←Sr. The CM0 is combined with the
nonce ciphertext N1 to produce the first ciphertext block (C0),
and the state is updated: C0 ← N1‖CM0; S←P(C0||Sc). For
the rest of the plaintext blocks, every block is XOR-ed with
the outer part of the state Sr, the subsequent ciphertext blocks
are produced, and the state is updated. Sr←Sr⊕Mi; Ci←Sr;
S←P(Sr||Sc). The last block is processed differently. The last
plaintext block (Mz) is XOR-ed with the outer state Sr and
is truncated to the length of the original unpadded plaintext

length so that the ciphertext and the original plaintext are of
the same length: Sr←Sr⊕Mz;Cz←bSr c|M |mod r .

5) DECRYPTION AND EXTRACTION OF NONCE
The encryption and decryption processes of PSASPIN are
identical except for the absence of the SMN nonce processing
in the decryption. In the decryption, the SNM is extracted
from the ciphertext. First, the ciphertext is split into blocks.
The first ciphertext block (C0) is split into the core ciphertext
part (Cm0) and the nonce part (N1) part, then the outer state
is XOR-ed with N1 and transformed with the permutation
P. The first core ciphertext is retrieved by XORing Sr
with (CM0);N1‖CM0←C0 ; S←P((Sr⊕N1)||Sc);M0←Sr⊕CM0.
For the rest of the ciphertext block except the last one,
the ciphertext block (Ci) is XORed with the inner state
Sr to produce the corresponding plaintext (Mn), the state
is updated; Mi ←Sr⊕Ci; S←CMi||Sc; S←P(S). The last
ciphertext is produced by XORing Cn with Sr truncated to
the original length of the ciphertext; Mn ← bSrc|Cn| ⊕ Cn
The padded inner state is then updated to proceed to the
finalization state.

6) FINALIZATION
The additional key material is used to defend against side-
channel and forgery attacks in the finalization phase. The
state is updated by the concatenation of the secret session
Ks key, the initialization vectors (IV), and the string of 0s
so that the length of the state S is 320-bit, the state width of
PSASPIN, the final tag T calculated from intermediate tags
tj, is obtained by the truncation of the XOR of the full state
and secret session key Ks to 128 bit, T←dS⊕Ke128 , then the
concatenation of the ciphertext blocks and the tag is returned:
C1|| . . . ||Ci||Cz||T. See figures 4.4 and 4.5 for the schematic
view of PSASPIN and algorithm later in this section for its
processes.

7) THE REKEYING FUNCTION
There are several options for implementing the rekeying
scheme, as shown in Figure 3. This study follows the leveled
implementation approach proposed in [38] and adopted by
[37], [84], where the overall scheme is divided into the
rekeying and the rekeyed data processing parts. There are
several implementation options for the data processing part:
block ciphers like AES, permutations like the duplex mode
of sponge construction, or tweakable block ciphers [81].
For the rekeying function, a PRF used as a pseudorandom
generator (G) is used, which in turn offers different options:
(1) leakage-resilient constructions like duplex sponges [56],
[81], (2) protected block cipherslike AEAS and SERPENT
[85], (3) Tweakable block ciphers(4) Algebraic construction-
based Galois field (GF) multiplication, or (5) Traditional
block ciphers with countermeasures like masking and hiding
[68], [82], [86].

This work uses the leveled implementation approach, with
two possibilities for implementing the rekeying function
(G). The first option is to use a function based on a GF

50824 VOLUME 10, 2022

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

FIGURE 3. Options for implementation of rekeying function.

multiplication field as in [84], [87], but with slight modi-
fications in the present case because their implementations
protect only against lower-order differential power attacks
(DPAs). This work combines countermeasures for protection
against higher-order attacks. For instance, in Algorithm 1 in
appendix A, a combination of masking and shuffling is
used to protect against SPA and DPA, whereas the sponge-
based core primitive uses the session key only once to
protect it against SPA. The other option is using a leakage-
resilient block cipher, which is a heavier construction than
the first option but is the preferred alternative in hardware
implementations. See Algorithm 1 in appendix A for details
of the G function based on the GF multiplication field using
masking and shuffling combined to protect against higher-
order DPA attacks.

V. SECURITY MODEL
The security of PSASPIN is measured in terms of the two
levels of its implementation. At one level, the security of
the rekeying function (which should be protected against
DPA and SPA) and generate session keys to protect the
core scheme. At the other level, the security of the sponge
function-based duplex constructions is to be protected against
SPA only. In addition, the whole scheme should preserve
the privacy and integrity of the data. The ability of an
adversary to break the rekeyed AE can be bounded in terms
of the key generation function and the base AE scheme.
Several countermeasures for protection against SCAs are
implemented at the hardware or software level. Examples
of countermeasures are masking, hiding, using logic styles,
and using session keys for a single or a small number
of operations. According to [32], the best way to benefit
from the countermeasures is to combine them; all the effort
for protection against SCAs should not be spent on a
single countermeasure. For instance, combining masking and
shuffling is ideal for protection against first-order and higher-
order SCAs.

FIGURE 4. PSASPIN encryption.

FIGURE 5. PSASPIN decryption.

A. THE SECURITY OF FRESH REKEYING FUNCTION (G)
The fresh rekeying function uses an initial master key to
generate session keys in the encryption of AE schemes
[30], [38]. This method can increase the amount of data
that can be encrypted with the same key (known as
key lifetime). There are two types of rekeying functions:
parallel rekeying, in which subkeys (session keys) are
generated independently from the master key and serial
generators. The generated subkeys depend on the previous
state that continuously updates [38]. According to [58],
parallel rekeying is necessary when parallel access to data
is used.

Following [38], we define the pseudorandomness of a
stateful generator: Let G= (K, N) be a stateful generator with
a block length k, let n be an integer, and LetA be an adversary.

VOLUME 10, 2022 50825

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

Consider the following experiment:

Experiment EXPprg−realG,n,A

for i = 1,, n do

(Outi, Sti)← N (Sti−1) ;← s‖Outi
g← A(s)

return g

Experiment EXPprg−randG,n,A

s← {0, 1}n.k

g← A(s)

return g

Considering the rekeying function as a stateful pseudorandom
generator, we provide the security analysis of our rekeying
function regarding the security notions according to that
assumption. We follow the approach of [38], but their scheme
protects a block cipher, while ours protects a sponge-based,
parallel AE scheme. The desired attribute of the generator is
pseudorandomness which describes the inability of adversary
A to distinguish the generator’s output from an equal length
random string. We define the advantage (ADV) of adversary
A and the advantage function of the generator G in the real
and random experiments in the following manner.

ADV prg
G,n,A = Pr

[
EXPprg−RealG,n,A = 1

]
− Pr

[
EXPprg−randG,n,A = 1

]
ADV prg

G,n,A(t) = maxA
{
ADV prg

G,n,A

}
.

The maximum is over A with time complexity t, and the
time complexity is the execution time of the two experiments
added to the size of the code of the adversary A. The
advantage function measures the adversary’s likelihood of
compromising the key generation function G with the
mentioned resources. The security of the key generation
function depends on the underlying PRF F : {0, 1}n ×
{0, 1}n × {0, 1}n→ {0, 1}n. Let {0, 1}n to {0, 1}n be a family
of functions mapping from n bit string to n bit string under a
uniform distribution, if D is a distribution that has an oracle
access, then

ADV prf
F,D = Pr [D(F,K)

= 1 : K R
←−
{0, 1}n]− Pr [Df (.)

= 1 : f
$
←Rn]

Is the advantage of the distinguisher D, the advantage of F is:
ADV prf

F (t, q) = MaxD
{
ADV prf

F,D

}
,

The maximum is over all A, the time complexity is t, and
making q oracle queries.
The following theorem shows how the pseudorandomness

of parallel fresh rekeying function depends on the underlying
PRF:

Let F : {0, 1}n × {0, 1}n → {0, 1}n be a
PRF G[F] be a parallel fresh key generator, then:
ADV prg

G[F},n(t) ≤ ADV
prf
F (t, n).

Proof: Let A be an adversary trying to compromise the
pseudorandomness of G[F], and let t be its running time of
EXPprg−realG[F],n,A and EXP

prg−rand
G[F], n,A. We upper bound the advantage

of A ADV prg
G[F],n,A. We construct a distinguisher D for F and

relate its advantage toA’s advantage. The distinguisherD has
access to an oracle O. It computes s = O(1)||||O(n) and
outputs the same guess A on its input s. we could say that
when the OracleO is drawn at random from F, the probability
that the distinguisher D return 1 equals the probability that
EXPprg−realG[F],n,A returns 1. On the other hand, the probability that

EXPprg−randG[F],n,A return 1 equals that of D returning 1 when O
is drawn randomly from the family of random functions Rn.
As D runs in time at most t and makes at most n queries to
its oracle, we obtain that: ADV prg

G[F],n,A≤ADV
prf
F (t, n). If A

is an arbitrary adversary and the maximum time of the two
experiments is t, that concludes the proof of the theorem.

Practically the pseudorandomness of the parallel fresh key
generator (G) depends on the security of the PRF (F) under
n queries. When F is a PRF, then we get ADV prg

G[F],n(t) ≈
n+t
2k

B. THE SECURITY OF THE REKEYED AE SCHEME
PSASPIN is an AE scheme based on the duplex mode
of the sponge construction. It takes as input plaintext M,
associated data A, a PMN nonce N, and a master secret key
K used to generate session keys that are used to encrypt
and decrypt messages in parallel. For The security of the
sponge construction, we consider two notions of security as
in the literature [2], [18], [19] called privacy and integrity,
which are central to the security of AE schemes. For the
security proof of rekeyed part of PSASPIN, we follow the
approach used by Jovanovic et al. [88], Andreeva et al. [46],
and Mihajloska et al. [89]

C. CONFIDENTIALITY (OR PRIVACY)
Confidentiality protects the secrecy of information in the
case of the Chosen Plaintext Attack (IND-CPA) against
eavesdropping adversaries and Chosen Ciphertext Attack
(IND-CCA) against active adversaries. In the former model,
the adversary is given an encryption oracle, and in the
latter, the adversary is given a decryption oracle as well;
therefore, the adversary’s advantage should be negligible in
all cases. [2], [18], [19]

Let P be a set of idealized permutations of a scheme
II. Then, we define the advantage of an adversary A, that
has access to both forward and inverse permutations in
compromising the privacy of II:

ADV priv
II (A) = |Prp,K

(
Ap
±, EK = 1

)
− Prp,\$(APP

±,\$
= 1).

The fact that A has access to both forward and inverse
permutations is denoted by P±. In the case of PSASPIN, A
does not have to be nonce respecting which means it can
use the same nonces in calling Ek and $. ADV priv

II (qp, qe, λe)
denotes the maximum advantages of all adversaries that
query Ek or $.

50826 VOLUME 10, 2022

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

D. INTEGRITY/AUTHENTICITY
Integrity ensures that the messages are from legitimate
sources and that they have not been tampered with during
transit or while at rest. Furthermore, it protects the integrity of
plaintext under the INT-PTXT model and the integrity of the
ciphertext under the INT-CTXT model. The former ensures
that the adversary is unable to produce ciphertext decryption
of a message that the sender had never encrypted, and the
latter ensures that the attacker is not able to create a ciphertext
that the sender has not previously produced, whether the
plaintext is new or not [2], [18].

Let us denote P as a set of underlying idealized permuta-
tions of AE scheme II. Then, we define integrity-related goals
of AE as captured by the inability of adversary A to come up
with a new plaintext that had not been produced by a valid
decryption (Dk (C) algorithm by using the secret key K in the
following way:
ADV auth

II = PrP,K
(
AP
±,EK , DK Forges

)
. The probability is

taken over random choices of A, K, and P. The adversary
succeeds in forging if Dk returns a message that is different
from ⊥ on an input (N, A, C, T) where (A, C) have never
been produced by Ek after taking (N, A, M) as input. We also
assume that the adversary can either be nonce-respecting or
non-nonce-respecting in the case of privacy. We symbolize
authenticity ADV auth

II

(
qp, qE , λE , qD, λD

)
. We denote the

maximum advantage taken over all adversaries that that query
P± at most qp times that make at most qE queries of total
length at most λE blocks to EK and at most qD queries of the
total length λD to DK/⊥.
In the proofs of privacy and integrity of PSASPIN in

the following sections, we consider an adversary that makes
qP permutation queries and qE encryption queries of the
total length λE . For the proof of integrity, adversary A
can also make qD decryption queries of the total length
λE we compute the number of permutation calls via qE
The exact computation is done for encryption queries with
similar parameter definitions. Let us consider qE , consisting
of c Associated data blocks and f message blocks, and T
intermediate tags, we describe the corresponding n state
values in the following manner:


init.S0



AS1,0 MS1,0 Ts1,0
...

...
...

...

...

ASn+1,c

...

...

MSn+1,f

...

...

Tsn+1,T




(1)

In this manner, if the jth query is c+f blocks, then the number
of state values (σe,j) is c+f+4; therefore, the number of
5−function evaluations via the encryption query is

calculated as follows:

σE :=

qE∑
j=1

σj,E≤qE (c+ f + 4) = λE + 4qE (2)

The same calculation is done for σD and σj,D.

E. NONCE-OBLIVIOUS AE
In the light of the work of Bellare, Ng & Tackmann [57],
nonce oblivious AE integrates the nonce with the core
ciphertext in the encryption process so that the scheme does
not take a nonce in the decryption process but is extracted
from the ciphertext for recovery of the plaintext. The authors
in [57]proposed five ways to turn the traditional NBAE
(NBE1) into a nonce-oblivious AE (NBE2) in what they
termed as Hide-Nonce Transforms (from HN1 to HN5).
In this work, we are interested in HN4, which provides Nonce
Misused Resistance (NMR) and nonce hiding, and we intend
to concretize it for sponge-based AE schemes. In HN4 [57],
A PRF F is applied to the triple (M, N, H), as in SIV[70],
to produce a synthetic nonce N1, which is sent as part of the
Ciphertext C2. As with SIV [70], the security of HN4 assumes
tidiness [90]. For all K, N, C1, H if S1.DEC(K,N,C1,H) =
M 6 = ⊥, then SE1.ENC(K,N,M,H) = C. Assuming that F is
a PRF of SENH4 = HN4[SE1,l, F] is inherited from tradition
SE1, and the authenticity is assumed only tidiness of SE1.

Let SENH4 = HN4[SE1,l, F] be a nonce hiding AE as
obtained above, and assume that SE1 satisfies tidiness. The
adversary A2 ∈ Aae2

n−nmh
⋂

Aae2
priv making qn queries to its new

Oracle and qe queries to it encryption queries to Encryption
oracle, we construct an adversary A1 ∈ Aae1

r−nB
⋂

Aae1
priv and

B1 such that: ADVae2
SE2 (A2) ≤ ADVprf

F (B1)+ ADVae1
SE1(A1).

Adversary preserves the resources of A2 up to increasing
the length of messages in Encryption queries by length (l).
Adversary B1 makes qn to its new oracles and qe queries to
its Encryption oracle, and its running time is about that of A2.
Also given A2 ∈ Aae2

n−nmh making qn queries to its new oracle,
qe queries to its Encryption oracle, and qv queries to its VF
oracle, we construct an adversary B2, such that: ADVae2

SE2 ≤

ADVprf
F +

qnqv
2SE1.nl

. Adversary B2 makes qn queries to its new
oracle and qe+qv (per user) to its Fin Oracle, and its running
time is about that of A2

F. NONCE MISUSE RESISTANT AUTHENTICATED
ENCRYPTION (MRAE)
Nonces are supposed not to be repeated since most AE
schemes guarantee security as long as nonces are unique, but
that is not always feasible in practice. Nonce repetitions can
happen because of mistakes, deliberate actions by malicious
users, or a result of applications and devices malfunc-
tioning like hardware resetting or virtual machine cloning
problems [21]–[24]. Rogaway and Shrimpton Proposed SIV
construction in [25] as NMRAE that provides the best
security possible if nonces are repeated. In SIV, the nonce is
constructed by applying a Pseudorandom Function (PRF) to

VOLUME 10, 2022 50827

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

FIGURE 6. PSASPIN adversary model.

the pair of theMessage (M) and Header (D), then the message
is processed with the synthetic nonce (N1).
Let F : K1 × {1, 0}∗∗ → {1, 0}n be a PRF and let 5 =

(K1, E,D) be a traditional IV-based encryption scheme with
message space X and IV-length n. Let 5̃ = SIV [F,5]. Let
A be an adversary (for attaching (5̃) with running time t and
asking q queries with a total length of µ. Then there exists an
adversary B and D such that:
ADV priv\$

5 (B)+ ADV prf
F (D) ≥ ADV dae

5̃
(A)− q

2n ;
Furthermore, B and D run in time í = t + Time5 (µ)+ cµ

for some absolute constant c and ask at most q queries with
total length µ.

G. PSASPIN ADVERSARY MODEL
The adversary A in this work is assumed to be powerful, hav-
ing access to the communication channel, aiming to violate
confidentiality and integrity, can encrypt different messages
with the same nonce, and having access to encryption and
decryption oracles. Figure 6 depicts the PSASPIN adversary
modeled according to Do et al. framework [91].

PSASPIN is secure as long as A with the defined assump-
tions, capabilities, and goals cannot violate its security with
a non-negligible probability. It is worth noting that although
A can use the same nonce to encrypt several messages,
it cannot access the nonce (which is encrypted and integrated
with the cyphertext) since PSASPIN hides the nonces from
adversaries.

H. THE SECURITY PROOF
In this subsection, the security of PSASPIN is proved in the
Ideal Permutation Model, where the underlying permutation
is assumed to be perfectly random as [88], [46], [89], under
the adversary model described in section 5. G.

1) PRIVACY OF PSASPIN
Theorem 1: Let 5 = (E, D) be a sponge-based AEAD based
on an ideal permutationPPP , then:

ADV priv
5

(
qp, qE , λE

)
≤
3(qP + σE)2

2b+1
+

(
8eqPσE

2b

) 1
2

+
rqP
2c
+
qP + σE

2k
,

where %E is the total number of primitive evaluations using
primitive queries.

Theorem 1 implies that PSASPIN protects privacy so
long as the total complexity qp + qE does not go beyond

min{2b/2, 2k} and the number of primitive queries does
not exceed 2c/r. The proof assumes that PSASPIN is
indistinguishable from a random permutation if direct and
indirect evaluations of PPP do not collide. Because of the use
of a fresh session key Ks for every encryption/decryption, the
uniqueness of the nonce (PMN and SMN), XORing a new
CounterID with the state in each branch, state values collide
with probability 1/2b. The collisions between direct calls to
PPP and indirect calls via EK , could happen with a probability
of 1/2c but do not significantly affect the bound according
to the multiplicity principle [92], which limits the maximum
number of states with the same rate parts.

Now Let’s focus on an adversary that can interact with
either (p±,EK) or

(
p±, \$

)
Whose challenge is to distinguish

between these two views. Here, the advantage can be
expressed as:

ADV priv
5 (A) = 1A

(
p±, EK ; p±, \$

)
. (3)

To make the analysis simpler, p± is replaced by a random
function f following the PRP/PRF switch lemma [88],
moving from p± to f± as following: The primitive f ± at first
maintains an initially empty list Q of tuples (x, y) of queries
and responses. The domain and range of Q are denoted by
dom(Q) and rng (Q), respectively. For a forward query f (x), if
x ⊂ dom(F), the value which corresponds to value y = f (x)
is retrieved. When a fresh, forward query is made, the value x
is selected randomly from {0, 1}b. If the value y is already
in rng(f), the primitive aborts, setting the flag bad to true;
otherwise, the tuple (x, y) is added to dom(Q) and rng(Q),
respectively. The description of f −1 is similar. Now p± and
f ± behave identically so long as f ± does not set the ‘bad’ flag.
Given that the adversary makes at most qp + qE evaluations
of f , that abort (setting the bad flag) may happen with a

likelihood of (qp+qE2)2b ≤
(qp+qE)

2

2b+1
Applying the PRF/ PRF

switch to both sides of the inequality:

1A
(
p±,EK ; p±, \$

)
≤1A

(
f ±,EK ; f ±, \$

)
+

(
qp + σE

)2
2b

.

(4)

Specifically, let us consider an adversary A that has oracle
access to (f ±,F), whereF∈ {EK , \$}. The adversary does not
have to be nonce-respecting, and she only makes full-block
queries, and no padding rules are applied.

Queries to the function f ± are represented as (x,y) for
i= 1 . . . qp, whereas queries to F are represented as elements
of (N ;Aj,Mj,Cj, tj) for j= 1 qE . When F = EK the state
values are as follows:

init.S0



AS1,0 MS1,0 ts1,0
...

...
...

...

...

ASn+1,c

...

...

MSn+1,f

...

...

tsn+1,t




. (5)

50828 VOLUME 10, 2022

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

Two collision events, guess and hit, are defined for the
proof. Event guess corresponds to a primitive call to an
encryption query colliding with a direct primitive query or
vice-versa. Event hit is triggeredwhen two independent states
(coming from previous state values) collide in the encryption
query:

let i∈{1 . . . q
p}, j,j′∈{1...qE , k{1,...,σE,j}, k ′∈

{
1,...,σE,j′

}:
guess (i; j, k) ≡ xi = sj,k , hit

(
j, k; j′, k ′

)
≡ parent

(
sj, k

)
6=parent

(
sj′ , k

′
)
∧sj,

k = sj′ , k
′.

The remaining part of the proof is built upon the following
two lemmas. Lemma 1 shows that

(
f ±, EK

)
and

(
f ±, \$

)
are indistinguishable as long as ¬event holds:
1A

(
f ±,EK ; f ±, \$

)
≤Pr

(
Af
±,EK sets event

)
.

Lemma 2 bounds these terms by qpqE+σ 2E/2
2b +(

8eqpσE
2b)1/2+

rqp
2c +

qp+σE
2k .

Lemma 1: Assuming that event is not triggered,(
f ±,EK

)
and

(
f ±, \$

)
are indistinguishable.

Proof: The outputs of the function f ± are sampled
uniformly at random in both cases of

(
f ±,EK

)
and

(
f ±, \$

)
.

The exception is when a collision occurs and guess occurs;
however, this event is already excluded by assuming¬event.
Therefore, only queries to the oracle F∈ {EK , \$) must be

considered. Let Nj be a fresh nonce used in the jth F-query
with state values (Nj; Aj,Mj) and with the corresponding
ciphertext and tag (Cj, tj), and let c and f be the number of
padded plaintext and associated data blocks, respectively.

By the definition of $ in the ideal world
(Cj, tj)\$

←−
{0, 1}|M |+τ , It can be proven that (Cj, tj) is

distributed identically in the real world, assuming that guess∨
hit is not triggered.

In PSASPIN, several facts contribute to the freshness and
hence the uniqueness of state values: (1) using a fresh session
key in each encryption/decryption; (2) the uniqueness of
the nonce values (PMN and SMN). (3) XORing the thread
counter in each of the parallel lanes. So, it can be claimed
that Aj,c is fresh and that f (ASj,u) does not have a collision
with any other F-query; otherwise, ¬event would have been
triggered. BecauseMSj,0 = f

(
ASj,c

)
⊕Ctr0, it can be claimed

that the state MSj,0 is fresh and hence unique; otherwise,
‘event’ would have been triggered. In the same manner,
MSj,i is fresh for i > 0. Therefore, the ciphertext blocks
are computed as CSj,i = MSj,i⊕[f (MSj,i−1)]r . Because the
state MSj,i−1 has not been evaluated by f , it outputs a fresh
random value from (0, 1)n, and hence Cj,i\$

←−
{0, 1}r . In the

tag formation process, the output of the final permutation
PPP is XORed with a fresh session key and truncated to the
last 128 bits (ti←dS⊕Kse128). Therefore, it can be claimed that
every intermediate tag is fresh and uniformly sampled from
tj\$
←−
{0, 1}τ and assuming that tj is a new input to f , it follows

that tj = [f (stagj]τ \$
←−
{0, 1}τ . The Final tag T is produced

from the unique intermediate tags tjs; for that reason, it is also
assumed to be unique.
Lemma 2: Bounding the terms

Pr
(
Af
±,EK sets event

)
= ≤

qpqE +
σ 2E
2

2b

+

(
8eqpσE
2b

) 1
2

+
rqp
2c
+
qp + σE

2k
. (6)

Proof: Let A be an adversary interacting with oracles
(f ±, EK), and let Pr (guess ∨ hit) be the probability to
be bounded. For i∈{1, . . . , qp}, the following events are
defined: key(i)≡[xi]k = Ks (fresh session key) and key(i) =
∨ikey(i). Event key(i) corresponds to the case where
a primitive query collides with the session key. Let
j∈ {1, . . . , qE } and k∈

{
1, . . . , σE,j

}
, and considering a

threshold ρ≥1, the following is defined:

multi (j, k) ≡
[
maxα∈{0,1}r |{j′ < j, 1 < k ′≤k : α

∈ {
[
sj′ , k

′
]r
, [f (sj′ , k

′)]r }t}|
]
> ρ

The even multi(j,k) bounds the number of states that
collide in the r part. The first state values (Sj′,1) are not
considered here because they are covered by the key(i) event.
The definition multi = multi(qE , σE,qE) is now proposed.
By basic probability:

P r (guess ∨ hit)≤P r
(
guess ∨ hit

∣∣∣∣ ¬ (key ∨ multi)+P r (key ∨ multi)

)
(7)

The probabilities are bounded by considering the ith

forward query or inverse primitive query or the k th state
of the jth encryption query and bounding the probability
that this evaluation triggers the event guess ∨ hit, under the
assumptions that this query does not set (key ∨ multi) and
also that (guess ∨ hit ∨ key ∨ multi) has not been triggered.
For the analysis of (key ∨ multi) a similar method can be
used.
Event Guess: this event can be triggered by the ith

permutation query (for i = 1, . . . , qp) or in evaluating any
state value of the jth construction query (for j = 1, . . . , qE).
Let us represent the values of the state in the jth construction
as in (1). Consider that any evaluation assumes that this
query does not trigger key ∨ multi and also assumes that
guess∨hit∨key∨multi has not been triggered before. First,
note that xi = S initj for some i, j would imply that event key(i)
has been triggered and thus would annul our assumption.
Therefore, xi = S initj is excluded from further analysis on
guess. Let ji∈ {1, . . . , qE } for i = 1, . . . , qp be the number
of encryption queries before the ith primitive query. Likewise,
ej∈

{
1, . . . , qp

}
for j = 1, . . . , qE shall be the number of

primitive queries made before the jth encryption query.
1. Consider a forward or an inverse primitive query
(xi, yi) for i ∈

{
1, . . . , qp

}
, that has not been posed to

p±. If it is a forward query xi, by ¬multi, there are at
most ρ state values, [xi]r = [s]r , and therefore xi = s
with probability at most ρ/2c. Note that the capacity

VOLUME 10, 2022 50829

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

part is not known to the adversary, and therefore it
can guess that part with probability at most 1/2c.
For inverse queries, the reasoning is slightly more
complex. Denote the inverse query as yi. If yi is taken
from the set of all encryption queries made before the
ith primitive query, the likelihood that a direct query
triggers the event guess to the primitive evaluation is
at most qpρ2c +

∑qp
i=1

∑ji
j=1

qE,j
2b

Next, consider the likelihood that the jth construction
query triggers guess for j∈{1, . . . , qE }. Consider the
labeling in (1). PSASPIN branching begins at the
initialization phase before the associated data part and
continues until the calculation of the intermediate tag.
For the associated data and the message parts, the state
values are depicted as follows:

ASj,c
...

...

ASn+1,n


= f (S init1)⊕



Ctr0
...

...

Ctrn−1


,



MSj,i
...

...

MSn+1,n



= f (ASc)⊕



Ctr0
...

...

Ctrn−1


,

The Ctr are distinguished by XORing the associated
data and the message with a branching number equal to
the parallel lane number. Note that any of these nodes
equals xi of the primitive query with the probability
for the associated data part Aji/2

b and for the message
partMji/2

b, where ij is the number of primitive queries
made before the jth encryption query.

In conclusion, Pr (guess|¬ (key ∨ multi)) ≤
qpρ
2c +∑qp

i=1
∑ji

j=1
σE,j

2b +
∑qE

j=1
ijσE,j
2b =

qpρ
2c +

qpσE
2b .

This argument uses
∑qp

i=1
∑ji

j=1 σE,j+
∑qE

j=1

σE,j∑
k=1

ij = qpσE

which follows from the counting argument.
The eventhit is triggered when two states with different

previous state values hit in the encryption queries. At initial-
ization, it is clear that S initj 6=S

init
j′ because of the uniqueness

of the nonce and the use of fresh Ks in every instance
of PSASPIN. Here, any state value sj,ifor i > 1(out
of a total of σE − qE) hits, and initial state sj′ only if
[Sj,k]k = Ks (session key); this happens with probability
σE/2k , assuming Sj,k is generated randomly. Finally, the other
two states, Sj,k and Sj′,k ′ for k, k ′ > 1, collide with the

probability
(
σE−qE

2

)
/2b. Hence, it can be concluded that

Pr (hit|¬ (key ∨ multi) ≤
(σE

2

)
2b + qE/2

k .

Event key: This event is triggered when the leftmost k
bit of xi from the ith primitive query, where i∈

{
1, . . . , qp

}
,

collides with the session key Ks. The adversary A makes at
most qp attempts, and therefore Pr (key≤qp/2k .
Event multi: This event bounds the number of state

values that collide in the rate (r) part of the state.
Considering any new state value sj,k−1; for a fixed value
x∈{0, 1}b, it satisfies f

(
Sj,k−1

)
= x or Sj,k = f

(
Sj,k−1

)
⊕

v = x for a predetermined value of v with probability at
most 2

2b . Now, α∈{0, 1}
r . More than ρ state values collide

with α with probability at the most
(
σE
2

) (2
2r

)ρ
≤

(
2eσE
ρ2

r

)ρ
using Stirling’s approximation

(
x!≥

(x
e

)xfor any x). Taking
into account any possible choice of α, Pr(multi)≤2r

(
2eσE
ρ2

r

)ρ
.

With the addition of the four bounds by means of (2):

Pr (guess ∨ hit)≤
qpσE + σ 2

E/2
2b

+
qpρρ
2c
+
qp + σE

2k

+ 2r
(
2eσE
ρ2

r

)ρ
.

Replacing ρ = max {r,
(
2eσE2c
qp2r

)1/2
} gives: Pr (guess ∨ hit)

≤
qpσE+

σ2E
2

2b + 2
(
2eqpσE

2b

) 1
2
+

rqp
2c +

qp+σE
2k , assuming that

qpσE+σ 2E/2
2b < 1; otherwise, the bound would have been

invalid. This completes the proof of Theorem 1.

2) INTEGRITY OF PSASPIN
Theorem 2: Let 5 = (K, E, D) be a sponge-based AEAD
where permutation5 is replaced by an ideal permutation that
works on a state of b bits, where b = r+c. Then:

ADV auth
5

(
qp, qE , λE , qD, λD

)
≤

(
qp + σe + σD

)2
2b

+

(
8eqpσE

2b

) 1
2

+
rqp
2c
+
qp + σE + σD

2k
+

(
qp + σE + σD

)
σD

2c
+
qD
2τ

where σE and σD are defined in (4).
Theorem 2 indicates that PSASPIN protects integrity if it

protects privacy (as in theorem 1), the number of adversarial
forgery attempts σD is limited, and the total complexity
qp + σE + σD does not exceed σD/2c.
Proof: Consider an adversary A that has oracle access to

(p±,EK , DK) and tries to forge an output different from ⊥
that was not produced by the encryption oracle. The PRP/PRF
switch lemma can be applied as in Theorem 1 to find that:

ADV auth
5 (A) = Pr

(
Ap
±,EK ,DK forges

)
≤ Pr

(
Af
±,EK ,DK forges

)
+

(
qp + σE + σD

)2
2b+1

. (8)

Adversary A is allowed to reuse nonces, and we assume
that it makes only full-block queries.

50830 VOLUME 10, 2022

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

In this proof, the same setting, as privacy proof, regarding
the guess and hit events is adopted but has been extended
to D-version related events, Dguess and Dhit . The state values
are the same as in (5) with the addition of ϑ to the subscripts,
where ϑ{E,D}. Let i∈

{
1, . . . , qp

}
, (D, j, k) be a decryption

query index and (δ′, j′, k ′) be an encryption or decryption
query index:

Dguess (i; j, k) ≡ xi = SD,j,k ,Dhit
(
j, k;ϑ ′, j′, k ′

)
≡ parent

(
SD,j,k

)
6= parent

(
Sϑ ′,j′,k ′

)
∧
(
SD,j,j

)
= Sϑ ′,j′,k ′ ,

Hence, it is possible to write Dguess = ∨i;j,kDguess(i; j, k)
and Dhit = ∨j,k;ϑ ′,j′,k ′Dhit (j, k;ϑ ′, j′, k ′) and then to define:

event = guess ∨ hit ∨ Dguess ∨ Dhit

Then according to (8):

Pr
(
Af
±,EK ,DK forges

)
≤ Pr

(
Af
±,EK ,DK forges|¬event

)
+ Pr

(
Af
±,EK ,DK sets event.

)
(9)

Lemma 3 will bound the probability that A sets event.
This proof focuses on the probability that adversary

A produces a forgery, assuming that an event has not
happened. This case can occur when [f (S tagj)]τ = tn for
decryption query j. However, every intermediate tag in
PSASPIN is new due to the freshness of the associated
data and message blocks, the XORing on a fresh counter
values, and the use of a fresh session key Ks. Therefore,
a forgery in this context could happen only with probability
1/2τ and summing the decryption queries qD yields:
Pr
(
Af
±,EK ,DK forges|¬event

)
≤
qD
2τ .

Lemma 3:

Pr
(
Af
±,EK ,DK setseven

)
≤
qpσE +

σ 2E
2

2b
+

(
8eqpσE

2b

) 1
2

+
rqp
2c
+
qp + σE + σD

2k

+

(
qp + σE + σD

)
σD

2c
+

(
qp + σE

)
σD +

σ 2D
2

2c
.

Proof: From Lemma 2, remember that event = guess ∨
hit ∨ Dguess ∨ Dhit , and therefore:

Pr
(
guess ∨ hit ∨ Dguess ∨ Dhit

)
≤ Pr

(
guess ∨ hit ∨ Dguess ∨ Dhit |¬ (key ∨ multi)

)
+ Pr (key ∨ multi) . (10)

The same techniques used to prove Lemma 2 can be used
here, considering all queries and measuring the probability
that ‘event’ is triggered, assuming that event was not set
before. Note that previous queries are not influenced by the
assumption that Dguess ∨ Dhit has not been set before.

Event Dguess: Note that adversary A is allowed to choose
the rate part, and the ciphertext and the tag are known.
Consequently, this event is triggered whenever there are
primitive state and decryption state values that collide in the
capacity part, and this can occur with probability at most
Pr (Dguess|¬(key ∨ multi) ≤ qpσD/2c.
Event Dhit : Although adversary A is allowed to reuse the

nonces in PSASPIN, a fresh counter value Ctrn is XORed
with each branch of the parallel thread, in addition to using
a fresh session key Ks and an SMN in every encryption
or decryption. This measure gives PSASPIN an additional
defensive barrier to protect confidentiality and authenticity.
Note that a decryption state can collide with the initial state
value with probability at most σD/2k .

Consider the jth decryption query (N; A, C; T) that consists
of A0, . . . , An−1 and C0, . . . , Cn−1 and write its state values
as in (5). Let (Nϑ,j;Aϑ,j,Cϑ,j;Tϑ,j) be a previous associated
data and ciphertext tuple that shares the longest common
prefix with (N; AD, C; T), keeping in mind that this tuple
may not be unique and might come from an encryption or
decryption query. Assuming that this query consists of ϑc, j
AD blocks and zϑ, j ciphertext blocks, the state values can be
written as in (5). For the rest, sub-cases can be used:
− (N ;A,C) =

(
Nϑ,j,Aϑ,j, Cϑ,j

)
, but T 6 = Tϑ,j. The

probability is zero because all the intermediate tags in
PSASPIN are new. Because of the freshness of the tag,
XORing with theCtr values, and the use of fresh session keys
and SMN, the state values before the tags are new in every
operation.

– (N ;A)=
(
Nϑ,j,Aϑ,j

)
, but C 6 = Cϑ,j. If the ciphertexts

C 6 = Cδ,j are different in all their blocks; this
means that the state is new and can collide with an
older state value with a probability at most 1/2c.
By summing up the encryption attempts, theoverline
(j̄th decryption query triggers the event Dhit with
probability

∑σD,j
k=1

σE+σD,1+···+σD,j−1+(k−1)
2c ;

– If C shares the longest common prefix l with Cδ,j and
l < m, then sCj,l,0 = s

C
ϑ,j,l,0 and s

C
j,l,1 = Cl ||[sCϑ,j,l,1]c 6=

sCϑ,j,l,1; this ensures that sCj,l,1 is a fresh input to
f , and it can hit an older state with a probability
of 1/2c which is the same bound as previously
determined.

– In PSASPIN, intermediate tags are generated at every
encryption and decryption. A fresh rekeying func-
tion (FRK) feeds the finalization process with a new
session key. Let ciphertexts C 6= Cϑ,j be different in all
their blocks; then sCj,l,1 6= sCδ,j,l,1 and the intermediate
tag is generated in the following manner after under-
going the final permutation: [f (sCj,l,1)⊕K]128 = tj,i.
The probability that tj,i collides with some older
state is at most 1/2τ for all possible older
queries.

– (N) =
(
Nϑ,j

)
, but A6=Aϑ,j. This process is the same

as in the ciphertext case, and the XORing, a fresh Ctr
value in every process, ensures that the state value is
new.

VOLUME 10, 2022 50831

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

– (N) 6 =
(
Nϑ,j

)
: The nonce is fresh, and consequently,

the initial state value and all subsequent state values are
new. In this case, the state values do not share a prefix
with any older state values.

– Summing over all queries:
– Pr (Dhit |¬(key ∨ multi))≤∑qD

j=1
∑σD,j

k=1
σE+σD,j+...+σD,j−1+(k−1)

2c +
σD
2k ≤

σEσD
(σD

2

)
2c +

σD
2k

Lemma 2 and (1) lead to:

Pr(even) ≤
qpσE + σ 2

E/2
2b

+

(
8eqpσE

2b

)
rqp
2c
+
qp + σE + σD

2k
+

(
qp + σE

)
σD + σ

2
D/2

2c

This completes the proof.

VI. PERFORMANCE ANALYSIS
A. BACKGROUND
Themain target of any encryption or authentication algorithm
design is security. However, performance (in software or
hardware) is also a significant concern in practice. Therefore,
assuming that cryptographic algorithms are secure, perfor-
mance is essential for developers or implementers to judge
algorithms [73], [93]

The need for measuring the performance of a crypto-
graphic algorithm usually stems from the requirement to
compare several algorithms or the need to know how well
a specific algorithm performs for applicability to specific use
cases. Therefore, it is an essential deciding factor in including
such algorithms in real-world protocols [93].

Several benchmarking frameworks for AE schemes exist in
the literature, such as SUPERCORP [94] and BRUTUS [95].
In addition, Ankele & Ankele [93] proposed their framework
for evaluating the software performance of 2nd round
candidates of the CAESAR competition. In this work,
we follow the benchmarking schemes followed by ASCON
developers [73] and Krovetz & Rogaway [96].

To evaluate its performance and compare it with similar
schemes, PSASPIN was implemented in C language follow-
ing the steps of Dobraunig et al. [73], despite the PSASPIN
providing more features such as parallelizability protection
against SPA and DPA, adversary invisible nonces, and Nonce
Misuse Resistance (NMR).

B. TEST ENVIRONMENT SETUP
We implemented our C language code for performance mea-
surement using an HP SpetreX360Convertible laptop, with
processor intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz
1.50 GHz processor, and RAM 16 GB. The Operating
system was Windows 10 Pro Operating system version 21H2
(OS Built 19044.1466), Software Integrated Development
Environment (IDE) of Microsoft Visual Studio Code version
1.63.2 (user setup), and GCC version of (Rev5, Built
by MSYS2 project) 11.2.0. for compile-time optimization,

FIGURE 7. Measuring the performance of PSASPIN.

FIGURE 8. PSASPIN performance with different message sizes.

we enabled the GCC compiler flags: -O3 -march = native
-Wall with the framework used by Dobraunig et al. [73].

C. THE RESULT
PSASPIN uses the inverse-free ASCON permutation [73],
which depends on the duplex mode of sponge construction,
needing only the forward direction permutation in the encryp-
tion and its decryption. We implemented measurements on
a continuous function with varying message sizes, as shown
in table 2 and figure 7. We took the mean for message
sizes of all test runs. For better comparability, we represent
the performance results in cycle per byte (Cpb), which is a
function of the throughput of the ciphers, instead of releasing
the timings and latency as done by Ankele & Ankle in [93].
Figure 8 depicts the result and shows that PSASPIN
performance ranges from 61.4 cycles per byte for small
messages and 3.6 cycles per byte for longer messages. See
Table 2 and figure 9 for a comparison of PSASPIN with other
AE schemes.

Figure 7 shows that PSASPIN is suited for longermessages
more than shorter messages, the penalty coming from
calculations at the initial stages of the process. Table 2 and
figure 8 compare the performance of PSASPIN to similar
schemes in the literature. For instance, ASCON is a serial
sponge-based AE scheme, while ISAP is a serial scheme
that uses a sponge-based rekeying function for protection
against SPA andDPA.At the same time, PI-cipher andNORX

50832 VOLUME 10, 2022

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

TABLE 2. Comparing PSASPIN with other sponge-based AE schemes.

FIGURE 9. Comparison of PSASPIN and other sponge-bases AE schemes.

are sponge-based parallel AE schemes that do not protect
against SPA/DPA. Finally, table 2 and figure 8 show that
PSABBIN is not as good as the other schemes in processing
shorter messages. However, it is comparable to them in longer
messages while providing more features like parallelizability
with side-channel protection, adversary invisible nonces, and
NMR.

VII. DISCUSSION
Sponge-based cryptography appeared in 2011 with
Bertoni et al. [71] took momentum after the sponge-based
hash function Keccak was selected by NIST as the basis for
SHA3 inOctober 2012 [97]. Block ciphers were the dominant
construction for AE until the first sponge-based AE was
proposed by [44], followed by other researchers, including
[46], [79], [80], [98]. As with other underlying constructions
of AE sponge-based backed by its modes of operations
like Duplex and its variants monkeyDuplex, SpongeWrap,
and DonkeySponge, [44], [72], came up with new design
philosophies in the area of AE doing away with complexities
of key scheduling and pertaining key-related attacks in block
ciphers.

Protection against side-channel attacks (which benefit
side-channel information instead of exploiting the weak-
nesses of cryptographic algorithms) is always essential. Still,
it gets even more critical when cryptographic devices are
deployed where they are accessible to adversaries [32], [61],
[99]. Moreover, protecting against SCAs is not trivial when
devices with resource constraints like IoT and low memory
smart cards are used as cryptographic devices [56], [100].

Sponge-based AE encryption schemes provide functional
features that boost performance like parallelizability, incre-
mentality [78], [79], single-pass, and online [73].Morawiecki
and Pieprzyk [80] proposed the first parallelizable AE
scheme based on the duplex mode of the sponge construction,
followed by [46], [78], [79]. However, the main problem
with these works was that they were not protected against
certain types of SCAs, especially against Simple Power
Analysis (SPA) and DPA [32], [61]. Another shortcoming of
the schemes mentioned above is the potential mishandling
of nonces that could compromise security if not dealt with
properly with a nonce-oblivious syntax [57]. In this work,
we aim to propose PSASPIN, a sponge-based AE that is
protected against SPA and DPA and handles the nonces in
a way invisible to the adversaries.

Regarding the protection against SCAs, the authors of
ISAP [56], SALE [56], and SPOOK [82] proposed sponge-
based AE schemes that are fortified against certain types of
SCAs using different countermeasures.

For instance, AE schemes in [56], [81] employed sponge-
based structures to protect against SPA and DPA, followed
by [82], which used a construction based on a tweakable
block cipher for the same purpose. In addition, these works
used leveled implantation, first proposed by [32], [38].
However, one shortcoming of these schemes is that they
are serial and thus lack the merit of parallelizability which
is vital for performance. PSASPIN adds parallelizability to
protection against SPA and DPA to bridge this gap.

Although there are several countermeasures to protect
against SCA attacks, such as hiding [32] and masking
[30], [33]–[35], fresh rekeying is a cheaper way to achieve
the same goal. First proposed by Abdalla & Bellare [38],
the master secret key is not used directly in the scheme in
fresh rekeying. Still, it is used as input to a pseudorandom
generator that produces subkeys (session keys) used to protect
confidentiality and integrity. Rekeying increases key lifetime,
meaning the number of times the same key can be used
to process data before being replaced. Abdalla & Bellare
[38], [85] proposed a leveled implementation consisting of
a rekeying part that does not have to be cryptographically
strong but must be protected against both SPA and DPA, and
the core scheme be cryptographically strong but needs to be
protected against only SPA [101], [102].

Medwed et al. [37], [84] proposed a fresh re-keying
scheme for challenge-response protocols using a leveled
implementation; They used a PRF based onmodular multipli-
cation, based GF(28) for the key generation of the AES block
cipher for the rekeyed data processing part. But their scheme
is vulnerable to attacks indicated by Black et al. in [103] due
to the weakness in key processing intermediate states of the
block cipher as indicated by [104]. The authors used masking
and shuffling to protect the rekeying part but applied them
separately, so their scheme is protected against first-order
DPA attacks. The proposed scheme is not vulnerable Chosen
plaintext Attack (CPA) mentioned in [104] because it uses
two different constructions. In addition, PSASPIN combines

VOLUME 10, 2022 50833

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

masking and shuffling to protect against higher-order DPA
attacks.

The authors of ISAP [56] and SALE [81] used a leveled
implementation (although in different ways), where the
rekeying part and the core rekeyed part use sponge-based
constructs. According to [58], although using the same
primitive for rekeying and data processing can reduce the
code size, the possibility of mounting CPA attack may lead
to compromise of the following keys. On the other side,
the authors of Spook [82] used a leveled implementation
where the key generation part is based on a tweakable block
cipher. The data processing part is based on the sponge
function (T-Sponge). Still, a tweakable block cipher is heavier
than a lighter algebraic construct based on Galois field
multiplication GF(28), which is also easier to protect against
SCAs. Finally, it is worth noting that these schemes are serial
and do not allow parallelism, which is an essential feature for
cryptographic schemes. PSASPIN uses a rekeying based on
GFmultiplication, and themain scheme uses the duplexmode
of the sponge construction. Using two different primitives
for the two levels gives a safety margin against the attacks
mentioned in [58].

Regarding the nonce-obliviousness feature,
Bellare et al. [57] discussed the possible weakness that
could creep into AE schemes by using the wrong nonce
format that could compromise privacy and proposed several
options for modified syntax NAE schemes. They called
those options Hide Nonce (NH) transforms. In the proposed
syntax, nonces are integrated and sent as part of the
ciphertext so that the schemes do not take nonces in their
decryption process. The authors in [57] concretized their
proposal for the Block cipher-based AE schemes, but it is
an open problem for the sponge-based scenarios. Our scheme
concretizes the nonce-hiding syntax for the Sponge-based AE
schemes.

This work is motivated by ISAP [56] but differs in five
ways: First, our scheme (PSASPIN) is a parallel, single-
pass scheme. Second, we use different primitives for key
generation and data processing (rekeyed part) for protection
against the vulnerability mentioned in [58]. Third, our
scheme provides security proof using game-playing theory
based on PRP/PFR switching lemma [25], [46], [59] for
the sponge-based data processing part based on the work
in[38]. Fourth, our scheme is nonce-oblivious; it obviates
the burden of nonce communication from the application
designers. Fifth, our new scheme is NMR, which tolerates
nonce repetition and protects security when the nonce is
reused. Finally, we used implantation of the rekeying part,
which used a PRF based on polynomial multiplication based
on GF(28) field as in [37], [84]. Dobraunig et al. [104] stated
that the schemes that use Galois field multiplication like
[37], [84] are vulnerable to related-key attacks that take
advantage of the partial state values related to the key
scheduling of block ciphers. Still, that attack is not relevant
to sponge-based schemes that do not have key scheduling as
in block ciphers.

VIII. CONCLUSION
This work proposes a sponge-based nonce-oblivious, NMR,
parallel, online and single-pass AE scheme protected against
side-channel attacks. We used a leveled implementation
approach where the key generation part used is a light
algebraic structure based on the Galois field multiplication,
and the data processing part is based on the duplex mode
of the sponge construction. The security proof was provided
using game-playing theory, and the performance analysis was
provided after implementing the proposed scheme in the C
programming language.

APPENDIX A
Algorithm 1: : PSASPIN Processes
Authenticated Encryption
EEE(A,M,K,N)

Input: Key Kε 0,1
k , K≤128,

Nonce N ε 0,1128,
Associated Data Aε0,1∗,
Plaintext Mε0,1∗

Output: Ciphertext Cε0,1|M|,
Tag Tε0,1128

Initialization
//Initialize a counter
Ctr=Ctr = dKe64
Split A into A||1||* r-bit blocks of
A1.An
Split M into M||1||* r-bit blocks of
M1.Mn−1
//Generate a fresh subkey
Ks←FRK(K,SMN)
//Update the shared State (S)
S← P(Ks||IV||0|S|−256)

Processing the Associated Data
for i = 1, . . . ,x do

S←PPP((Sr⊕Ai)||Sc)
S←S⊕(03991)

Processing Nonce
//in the first thread, process on block nonce N of 128 bits.
If Ctr=0

Sr ← Sr ⊕ (N‖A0‖M0)

N1← Sr
Sr ←Sr⊕(N1)
S←PPP((Sr⊕N1)||Sc)

Processing Plaintext
If Ctr=0

Sr ←Sr⊕M0
CM0←Sr
C0← N1‖CM0
S←P(C0||Sc)

for i = 1,. . . ,z-1 do
Sr ←Sr⊕Mi
Ci←Sr
S←P(Sr ||Sc)

50834 VOLUME 10, 2022

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

Sr ←Sr⊕Mz

Cz←bSr c|M |mod r

Finalization
Ks←FRK(K,SMN)
S←P(S⊕(0r ||Ks||0c−r−k)
ti←dS⊕Kse128
// in the last thread
If Ctr=n
T ← t0 ⊕ t1⊕ tz−1
Return C1||. . . ||Ci||Cz||T

Authenticated Decryption
DDD(A,M,K,N)

Input: Key Kε 0,1k , K≤128,
Nonce N ε 0,1128,
Associated Data Aε0,1∗,
Plaintext Mε0,1∗

Output: Ciphertext Cε0,1|M |,
Tag Tε0,1128

Initialization
//Initialize a counter
Ctr=Ctr = dKe64
Split A into A||1||* r-bit blocks of
A1.An
Split M into M||1||* r-bit blocks of
M1.Mn−1
//Generate a fresh subkey
Ks←FRK(K, SMN)
//Update the shared State (S)
S← P(Ks||IV||0|S|−256)

Processing the Associated Data
Split A into A||1||* r-bit blocks of
A1.Ax

for i = 1, . . . ,x do
S←P((Sr⊕Ai)||Sc)
S←S⊕(03991)

// No nonce input
Processing Ciphertext

Split C into C||1||* r-bit blocks of
C1.Cz−1

// parse C0into CN and CM0

N1‖CM0←C0

S←PPP((Sr⊕N1)||Sc)
M0←Sr⊕CM0;S←P(Sr ||Sc)

for I = 1,. . . ,z-1 do
Mi←Sr⊕Ci
S←CMi||Sc
S←P(S)

Mz← bSrc|Cz| ⊕ Cz
Sr←Sr⊕(Mz||1||0∗)

Finalization
Ks←FRK(K,IV)

S←P(S⊕(0r ||Ks||0c−r−k)

ti←dS⊕Kse128
//in the last thread
If Ctr=n
T ′′← t0 ⊕ t1⊕ tz−1
If T

′′

=T
Return M1||. . . ||Mi||Mz

//Fresh rekeying function
FRK(K, R)
{
Ks=K*R
} return Ks

Fresh Rekeying Algorithm (FRK)
Require : a, b∈GF(28)[y]/yd + 1
Ensures : c = b ∗ b∈GF(22)[y]/yd + 1
x ← rand(), j← x, k ← x, with i = 1− m, 0← st
while k # x − 1 mod d do
kb← k
for i = 1 to m do

kbi← kbi ⊕ bj
j← j+ 1 mod d

End for
ks← N .bki
for i = 1 to m do

ks← N ·(bj ⊕ bki)
End for

End while
Return (ksi, st + 1)

REFERENCES
[1] M. Bellare and C. Namprempre, ‘‘Authenticated encryption: Relations

among notions and analysis of the generic composition paradigm,’’ in
Advances in Cryptology. Berlin, Germany: Springer, 2000.

[2] J. Katz and M. Yung, ‘‘Unforgeable encryption and chosen ciphertext
secure modes of operation,’’ in Fast Software Encryption. Berlin,
Germany: Springer, 2001.

[3] S. Riou. (Jan. 17, 2021). DryGASCON, Lightweight Cryptography
Standardization Process Round 1 Submission. Submission to NIST 2019.
[Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/light
weight-cryptography/documents/round-2/spec-doc-rnd2/drygascon-
spec-round2.pdf

[4] M. Dworkin, ‘‘Recommendation for block cipher modes of operation—
The CCM mode for authentication and confidentiality,’’ NIST, Gaithers-
burg, MD, USA, Tech. Rep. 800-38C, 2007.

[5] C. J. A. Jansen and D. E. Boekee, ‘‘Modes of blockcipher algorithms
and their protection against active eavesdropping,’’ in Advances in
Cryptology. Berlin, Germany: Springer, 1988.

[6] C. S. Jutla, ‘‘Encryption modes with almost free message integrity. in
Advances in Cryptology. Berlin, Germany: Springer, 2001.

[7] V. D. Gligor and P. Donescu, ‘‘Fast encryption and authentication:
XCBC encryption and XECB authentication modes,’’ in Fast Software
Encryption. Berlin, Germany: Springer, 2002.

[8] P. Rogaway, M. Bellare, and J. Black, ‘‘OCB: A block-cipher mode of
operation for efficient authenticated encryption,’’ in Proc. 8th ACM Conf.
Comput. Commun. Security., Philadelphia, PA, USA, 2001, pp. 196–205.

[9] K. Martin, Everyday Cryptography. Oxford, U.K.: Oxford Press, 2012.
[10] M. Bellare and C. Namprempre, ‘‘Authenticated encryption: Relations

among notions and Analysis of the generic composition paradigm,’’
J. Cryptol., vol. 21, no. 4, pp. 469–491, Oct. 2008.

[11] E. Andreeva, A. Bogdanov, A. Luykx, B. Mennink, E. Tischhauser,
K. Yasuda, N. Datta, and M. Nandi. (2016). COLM v1.
Submission to CAESAR R3. (Mar. 2, 2021). [Online]. Available:
https://competitions.cr.yp.to/round2/colm.pdf

VOLUME 10, 2022 50835

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

[12] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer. (2016).
ASCON v2. Submission to CAESAR R3. (Mar. 2, 2021). [Online].
Available: http://competitions.cr.yp.to/round1/asconv1.pdf

[13] J. Jean, I. Nikolić, and T. Peyrin. (2016). Deoxys v1.41.
Submission to CAESAR R3. (Jan. 17, 2021). [Online]. Available:
http://competitions.cr.yp.to/round1/deoxysv1.pdf

[14] T. Krovetz and P. Rogaway. (2016). OCB (v1.1). Submission
to CAESAR R3. (Jan. 14, 2021). [Online]. Available:
http://competitions.cr.yp.to/round1/ocbv1.pdf

[15] H. Wu, and B. Preneel. (2016). AEGIS—A Fast Authenticated Encryption
Algorithm (v1.1). Submission to CAESAR R3. (Jan. 14, 2021). [Online].
Available: http://competitions.cr.yp.to/round1/aegisv1.pdf.

[16] H. Wu. (2016). ACORN—A Lightweight Authenticated Cipher (v3).
Submission to CAESAR R3. (Feb. 2, 2021). [Online]. Available:
http://competitions.cr.yp.to/round1/acornv1.pdf

[17] M. A. Jimale, M. R. Z’aba, M. L. B. M. Kiah, M. Y. I. Idris, N. Jamil,
M. S.Mohamad, andM. S. Rohmad, ‘‘Authenticated encryption schemes:
A systematic review,’’ IEEE Access, vol. 10, pp. 14739–14766, 2022.

[18] M. Bellare and C. Namprempre, ‘‘Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,’’ in
Advances in Cryptology. Berlin, Germany: Springer, 2000.

[19] P. Rogaway, ‘‘Authenticated-encryption with associated-data,’’ in Proc.
9th ACM Conf. Comput. Commun. Secur. (CCS), Washington, DC, USA,
2002, pp. 98–107.

[20] S. Gueron and Y. Lindell, ‘‘GCM-SIV: Full nonce misuse-resistant
authenticated encryption at under one cycle per byte,’’ 22nd ACM Conf.
Comput. Commun. Secur., Denver, CO, USA: Denver Marriot City
Center, 2015, pp. 12–16.

[21] N. Borisov, I. Goldberg, and D. Wagner, ‘‘Intercepting mobile communi-
cations: The insecurity of 802.11,’’ in Proc. 7th Annu. Int. Conf. Mobile
Comput. Netw. (MobiCom), Rome, Italy, 2001, pp. 180–189.

[22] T. Kohno, ‘‘Attacking and repairing the winZip encryption scheme,’’ in
Proc. 11th ACM Conf. Comput. Commun. Secur. (CCS), Washington DC,
USA, 2004, pp. 72–81.

[23] M. Vanhoef and F. Piessens, ‘‘Key reinstallation attacks: Forcing nonce
reuse in WPA2,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Dallas, TX, USA, Oct. 2017, pp. 1313–1328.

[24] H. Wu, ‘‘The misuse of RC4 in Microsoft word and excel,’’
Cryptology ePrint, Tech. Rep. 2005/007, 2005. [Online]. Available:
https://eprint.iacr.org/2015/102.pdf

[25] P. Rogaway and T. Shrimpton, ‘‘Deterministic authenticated-encryption:
A provable-security treatment of the key-wrap problem,’’ Cryptol-
ogy ePrint Archive, Dept. Comput. Sci., Univ. California, Davis,
CA 95616, USA, Tech. Rep. 2006/221, 2006. [Online]. Available:
https://www.iacr.org/archive/eurocrypt2006/40040377/40040377.pdf

[26] P. Rogaway, Nonce-Based Symmetric Encryption. Berlin, Germany:
Springer, 2004.

[27] P. Rogaway, M. Bellare, and J. Black, ‘‘OCB: A block-cipher mode of
operation for efficient authenticated encryption,’’ ACM Trans. Inf. Syst.
Secur., vol. 6, no. 3, pp. 365–403, Aug. 2003.

[28] M. Bellare, R. Ng, and B. Tackmann, ‘‘Nonces are noticed: AEAD
revisited,’’ Cryptology ePrint Archive, IACR-CRYPTO-2019, Santa
Barbara, CA, USA, Tech. Rep. 2019/624, Aug. 2019. [Online]. Available:
https://eprint.iacr.org/2019/624

[29] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, B. Mennink,
R. Primas, and T. Unterluggauer. (2019). ISAP v2.0. Submission
to the NIST LWC Competition R2. (Mar. 10, 2021). [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf

[30] B. Mennink, ‘‘Beyond birthday bound secure fresh rekeying: Application
to authenticated encryption,’’ in Proc. ASIACRYPT, Dec. 2020. [Online].
Available: https://eprint.iacr.org/2020/1082.pdf

[31] S. Picek, A. Heuser, A. Jovic, S. A. Ludwig, S. Guilley, D. Jakobovic, and
N. Mentens, ‘‘Side-channel analysis and machine learning: A practical
perspective,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017,
pp. 4095–4102.

[32] S. Mangard and E. T. O. Popp, ‘‘Power analysis attacks: Revealing the
secrets of smart cards,’’ in Power Analysis Attacks: Revealing the Secrets
of Smart Card. Boston, MA, USA: Springer, 2007.

[33] A. Duc, S. Faust, and F.-X. Standaert, ‘‘Making masking security proofs
concrete,’’ in Advances in Cryptology. Berlin, Germany: Springer, 2015.

[34] E. Prouff andM. Rivain, ‘‘Masking against side-channel attacks: A formal
security proof,’’ in Advances in Cryptology. Berlin, Germany: Springer,
2013.

[35] Y. Ishai, A. Sahai, and D. Wagner, ‘‘Private circuits: Securing hardware
against probing attacks,’’ in Advances in Cryptology. Berlin, Germany:
Springer, 2003.

[36] F. Antognazza, A. Barenghi, and G. Pelosi, ‘‘Metis: An integrated
morphing engine CPU to protect against side channel attacks,’’ IEEE
Access, vol. 9, pp. 69210–69225, 2021.

[37] M. Medwed, F.-X. Standaert, J. Großschädl, and F. Regazzoni, ‘‘Fresh
re-keying: Security against side-channel and fault attacks for low-cost
devices,’’ in Progress in Cryptology. Berlin, Germany: Springer, 2010.

[38] M. Abdalla and M. Bellare, ‘‘Increasing the lifetime of a key: A
comparative analysis of the security of re-keying techniques,’’ in
Advances in Cryptology. Berlin, Germany: Springer, 2000.

[39] J. Daemen and V. Rijmen, ‘‘The design of Rijndael,’’ in The Advanced
Encryption Standard. Springer-Verlag, Berlin, Germany, 2002.

[40] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo,
‘‘GIFT: A small present,’’ in Cryptographic Hardware and Embedded
Systems. Cham, Switzerland: Springer, 2017.

[41] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki,
P. Sasdrich, and S. M. Sim, ‘‘The SKINNY family of block ciphers and
its low-latency variant MANTIS,’’ in Advances in Cryptology. Berlin,
Germany: Springer, 2016.

[42] R. Tahir, M. Y. Javed, and A. R. Cheema, ‘‘Rabbit-MAC: Lightweight
authenticated encryption in wireless sensor networks,’’ in Proc. Int. Conf.
Inf. Autom., Jun. 2008, pp. 573–577.

[43] J. Alizadeh, M. R. Aref, and N. Bagheri, ‘‘JHAE: A novel permutation-
based authenticated encryption mode based on the hash mode JH,’’
Tech. Rep. 2014/193, Cryptology ePrint Archive, 2014. [Online].
Available: https://eprint.iacr.org/2014/193

[44] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, ‘‘Duplexing the
sponge: Single-pass authenticated encryption and other applications,’’
SACTaichung, Taiwan, Taipei City, Tech. Rep. 2011/499, 2011. [Online].
Available: https://eprint.iacr.org/2011/499.pdf

[45] S. Cogliani, D.-Ş. Maimu, D. Naccache, R. P. D. Canto, R. Reyhanitabar,
S. Vaudenay, and D. Vizár. (2014). Offset Merkle-Damgård (OMD)
Version 1.0. Submission to CAESAR R1. (Aug. 12, 2020). [Online].
Available: http://competitions.cr.yp.to/round1/omdv10.pdf

[46] E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, B. Mennink, N. Mouha,
and K. Yasuda, ‘‘APE: Authenticated permutation-based encryption for
lightweight cryptography,’’ in Proc. FSE, London, U.K., Mar. 2014.
[Online]. Available: https://eprint.iacr.org/2013/791.pdf

[47] X. Lu, Z. Ma, and D.-G. Feng, ‘‘A quantum authenticated encryption
scheme,’’ in Proc. 7th Int. Conf. Signal Process. (ICSP), Aug. 2004,
pp. 2306–2309.

[48] T. Iwata, K. Minematsu, J. Guo, S. Morioka, and E. Kobayashi. (2016).
CLOC and SILC. Submission to CAESAR R3. (Mar. 2, 2021). [Online].
Available: http://competitions.cr.yp.to/round3/clocsilcv3.pdf

[49] M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre, ‘‘Online
ciphers and the hash-CBC construction,’’ in Advances in Cryptology.
Berlin, Germany: Springer, 2001.

[50] Y. Sasaki and K. Yasuda, ‘‘A new mode of operation for incremental
authenticated encryption with associated data,’’ in Selected Areas in
Cryptography. Cham, Switzerland: Springer, 2016.

[51] A. Boorghany, S. Bayat-Sarmadi, and R. Jalili, ‘‘Efficient lattice-
based authenticated encryption: A practice-oriented provable security
approach,’’ Cryptology ePrint Archive, Tech. Rep. 2016/268, 2016.
[Online]. Available: https://eprint.iacr.org/2016/268.pdf

[52] R. Reyhanitabar, S. Vaudenay, and D. Vizár, ‘‘Authenticated encryption
with variable stretch,’’ in Advances in Cryptology. Berlin, Germany:
Springer, 2016.

[53] A. Chakraborti, A. Chattopadhyay, M. Hassan, and M. Nandi,
‘‘TriviA: A fast and secure authenticated encryption scheme,’’ in
Proc. CHES, Saint Malo, France, Sep. 2015. [Online]. Available:
https://eprint.iacr.org/2015/590.pdf

[54] M. Agrawal, D. Chang, and S. Sanadhya, ‘‘A new authenticated encryp-
tion technique for handling long ciphertexts in memory constrained
devices,’’ in Proc. ACISP, Brisbane, Australia, 2015. [Online]. Available:
https://eprint.iacr.org/2015/331.pdf

[55] D. Engels, M.-J. O. Saarinen, P. Schweitzer, and E. M. Smith,
‘‘The hummingbird-2 lightweight authenticated encryption algorithm,’’
inProc. 7th Int. Workshop, RFIDSec, Amherst, USA, Jun. 2011. [Online].
Available: https://eprint.iacr.org/2011/126.pdf

[56] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel,
B. Mennink, R. Primas, and T. Unterluggauer. (2019). ISAP v2.0.
Submission to the NIST LWC Competition R2. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf

50836 VOLUME 10, 2022

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

[57] M. Bellare, R. Ng, and B. Tackmann, Nonces Are Noticed: AEAD
Revisited. Cham, Switzerland: Springer, 2019.

[58] Re-keyingMechanisms for Symmetric Keys. Wilmington, DE, USA: IETF
Administration LLC N West Street, Suite, 2019.

[59] P. Jovanovic, A. Luykx, and B. Mennink, ‘‘Beyond 2c/2 security
in sponge-based authenticated encryption modes,’’ in Advances in
Cryptology. Berlin, Germany: Springer, 2014.

[60] D. Kwon, H. Kim, and S. Hong, ‘‘Non-profiled deep learning-based
side-channel preprocessing with autoencoders,’’ IEEE Access, vol. 9,
pp. 57692–57703, 2021.

[61] T. Popp, ‘‘An introduction to implementation attacks and countermea-
sures,’’ in Proc. 7th IEEE/ACM Int. Conf. Formal Methods Models Co-
Design, Cambridge, MA, USA, Jul. 2009, pp. 108–115.

[62] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, ‘‘Towards sound
approaches to counteract power-analysis attacks,’’ in Advances in
Cryptology. Berlin, Germany: Springer, 1999.

[63] P. Kocher, J. Jaffe, and B. Jun, ‘‘Differential power analysis,’’ in Advances
in Cryptology. Berlin, Germany: Springer, 1999.

[64] P. C. Kocher, ‘‘Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,’’ in Advances in Cryptology. Berlin,
Germany: Springer, 1996.

[65] M. G. Kuhn and R. J. Anderson, ‘‘Soft tempest: Hidden data trans-
mission using electromagnetic emanations,’’ Information Hiding. Berlin,
Germany: Springer, 1998.

[66] N. Mukhtar, A. P. Fournaris, T. M. Khan, C. Dimopoulos, and Y. Kong,
‘‘Improved hybrid approach for side-channel analysis using efficient
convolutional neural network and dimensionality reduction,’’ IEEE
Access, vol. 8, pp. 184298–184311, 2020.

[67] T. Kim and Y. Shin, ‘‘ThermalBleed: A practical thermal side-channel
attack,’’ IEEE Access, vol. 10, pp. 25718–25731, 2022.

[68] J. Krämer and P. Struck, ‘‘Leakage-resilient authenticated encryp-
tion from leakage-resilient pseudorandom functions,’’ Cryptology
ePrint, Tech. Rep. 2020/280, 2020. [Online]. Available: https://
eprint.iacr.org/2020/280.pdf

[69] A. Belenko, ‘‘Apple SSL/TLS bug (CVE-2014–1266),’’ NowSecure,
Tech. Rep., 2014. [Online]. Available: https://www.nowsecure.com/blog/
2014/02/23/apple-ssl-tls-bug-cve-2014-1266/

[70] S. Gueron and Y. Lindell, ‘‘GCM-SIV: Full nonce misuse-resistant
authenticated encryption at under one cycle per byte,’’ in Proc. 22nd ACM
SIGSAC Conf. Comput. Commun. Secur., Denver, CO, USA, Oct. 2015,
pp. 109–119.

[71] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. (2011). Cryp-
tographic Sponge Functions. [Online]. Available: https://keccak.team/
files/CSF-0.1.pdf

[72] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. (2012).
Permutation-Based Encryption, Authentication and Authenticated
Encryption. (Apr. 29, 2021). [Online]. Available: https://keccak.team/
files/KeccakDIAC2012.pdf

[73] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, ‘‘ASCON
v1.2. submission to the NIST LWC competition R2,’’ National Institute
standards Technology (NIST), Tech. Rep. NISTIR 8369, 2019. [Online].
Available: https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8369.pdf

[74] T. Beyne, Y. L. Chen, C. Dobraunig, and B. Mennink. (2019). Elephant
v1.1. Submission to the NIST LWC Competition R2. (Mar. 10, 2021).
[Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/
lightweight-cryptography/documents/round-2/spec-doc-rnd2/elephant-
spec-round2.pdf

[75] C. Dobraunig,M. Eichlseder, S. Mangard, F. Mendel, B. Mennink,
R. Primas, and T. Unterluggauer. (2019). ISAP v2.0. Submission
to the NIST LWC Competition R2. (Mar. 10, 2021). [Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/isap-spec-round2.pdf

[76] Z. Bao, A. Chakraborti, N. Datta, J. Guo, M. Nandi,
T. Peyrin, and K. Yasuda. (2019). PHOTON-Beetle Authenticated
Encryption and Hash Family. Submission to the NIST
LWC Competition R2. (Mar. 10, 2021). [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/photon-beetle-spec-round2.pdf

[77] J. Daemen, S. Hoffert, M. Peeters, G. V. Assche, and R. V. Keer.
(2019). Xoodyak, a Lightweight Cryptographic Scheme. Submission
to the NIST LWC Competition R2. (Mar. 10, 2021).[Online].
Available: https://csrc.nist.gov/CSRC/media/Projects/lightweight-
cryptography/documents/round-2/spec-doc-rnd2/Xoodyak-spec-
round2.pdf.

[78] J.-P. Aumasson, P. Jovanovic, and S. Neves. (2016). NORX v3.
Submission to CAESAR R3. (Mar. 2, 2021). [Online]. Available:
http://competitions.cr.yp.to/round1/norxv1.pdf

[79] D. Gligoroski, H. Mihajloska, S. Samardjiska, H. Jacobsen,
M. El-Hadedy, and R. E. Jensen. (2014). 5-Cipher v11.
Submission to CAESAR R1. (Dec. 8, 2020). [Online]. Available:
http://competitions.cr.yp.to/round1/picipherv1.pdf

[80] P. Morawiecki and J. Pieprzyk, ‘‘Parallel authenticated
encryption with the duplex construction,’’ Cryptology ePrint
Archive, Tech. Rep. 2013/658, 2013. [Online]. Available:
https://eprint.iacr.org/2013/658.pdf

[81] J. P. Degabriele, C. Janson, and P. Struck, ‘‘Sponges resist
leakage: The case of authenticated encryption,’’ in Proc. ACR-
ASIACRYPT, Kobe, Japan, Dec. 2019. [Online]. Available:
https://eprint.iacr.org/2019/1034.pdf

[82] D. Bellizia, F. Berti, O. Bronchain, G. Cassiers, S. Duval, C. Guo,
G. Leander, G. Leurent, I. Levi, C. Momin, O. Pereira, T. Peters,
F.-X. Standaert, and F. Wiemer. (2019). Spook: Sponge-Based Leakage-
Resistant Authenticated Encryption with a Masked Tweakable Block
Cipher. Submission to the NIST LWCCompetition R2 [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/Spook-spec-round2.pdf

[83] D. Whiting, R. Housley, and N. Ferguson, ‘‘Counter with CBC-MAC
(CCM),’’ RFC Editor, Tech. Rep., 2003.

[84] M. Medwed, C. Petit, F. Regazzoni, M. Renauld, and F.-X. Standaert,
‘‘Fresh re-keying II: Securing multiple parties against side-channel and
fault attacks,’’ inProc. CARDIS. Berlin, Germany: Springer-Verlag, 2011.

[85] O. Pereira, F.-X. Standaert, and S. Vivek, ‘‘Leakage-resilient authentica-
tion and encryption from symmetric cryptographic primitives,’’ in Proc.
22nd ACM SIGSAC Conf. Comput. Commun. Secur., Denver, CO, USA,
Oct. 2015, pp. 96–108.

[86] G. Barwell, D. P. Martin, E. Oswald, and M. Stam, ‘‘Authenticated
encryption in the face of protocol and side channel leakage,’’ in
Proc. IACR-ASIACRYPT, Hong Kong, Dec. 2017. [Online]. Available:
https://eprint.iacr.org/2017/068.pdf

[87] M. Abdalla, S. Belaïd, and P.-A. Fouque, ‘‘Leakage-resilient symmetric
encryption via re-keying,’’ in Cryptographic Hardware and Embedded
Systems. Berlin, Germany: Springer, 2013.

[88] P. Jovanovic, A. Luykx, and B. Mennink, ‘‘Beyond 2c/2 security
in sponge-based authenticated encryption modes,’’ in Proc. IACR-
ASIACRYPT, Kaoshiung, Taiwan, Dec. 2014. [Online]. Available:
https://eprint.iacr.org/2014/373.pdf

[89] H. Mihajloska, B. Mennink, and D. Gligoroski. (2016). 5-Cipher
with Intermediate Tags. (Jan. 9, 2021). [Online]. Available: http://pi-
cipher.org/upload/Pi-Cipher%20with%20intermediate%20tags.pdf

[90] C. Namprempre, P. Rogaway, and T. Shrimpton, ‘‘Reconsidering generic
composition,’’ in Advances in Cryptology. Berlin, Germany: Springer,
2014.

[91] Q. Do, B. Martini, and K.-K. R. Choo, ‘‘The role of the adversary model
in applied security research,’’ Comput. Secur., vol. 81, pp. 156–181,
Mar. 2019.

[92] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, ‘‘Sponge-based
pseudo-random number generators,’’ in Cryptographic Hardware and
Embedded Systems. Berlin, Germany: Springer, 2010.

[93] R. Ankele and R. Ankele, ‘‘Software benchmarking of the 2nd
round CAESAR candidates,’’ Cryptology ePrint, Tech. Rep. 2016/740,
2016. [Online]. Available: https://eprint.iacr.org/2016/740

[94] D. J. Bernstein. (2016). Supercop. eBACS: ECRYPT Benchmark-
ing of Cryptographic Systems. (Jan. 26, 2022). [Online]. Available:
https://bench.cr.yp.to/supercop.html

[95] M.-J. O. Saarinen, ‘‘The BRUTUS automatic cryptanalytic
framework: Testing CAESAR authenticated encryption candidates
for weaknesses,’’ J. Cryptograph. Eng., 2014. [Online]. Available:
https://eprint.iacr.org/2014/850.pdf, doi: 10.1007/s13389-015-0114-1.

[96] T. Krovetz and P. Rogaway, ‘‘The software performance of authenticated-
encryption modes,’’ in Fast Software Encryption. Berlin, Germany:
Springer, 2011.

[97] (Sep. 21, 2021). SHA Zoo. [Online]. Available:
https://ehash.iaik.tugraz.at/wiki/The_SHA-3_Zoo

[98] M.-J. O. Saarinen, ‘‘CBEAM: Efficient authenticated encryption from
feebly one-way φ functions,’’ in Proc. CT-RSA Conf., San Francisco, CA,
USA, Feb. 2014. [Online]. Available: https://eprint.iacr.org/2013/773.pdf

[99] S. Dziembowski and K. Pietrzak, ‘‘Leakage-resilient cryptography,’’
in Proc. 49th Annu. IEEE Symp. Found. Comput. Sci., Oct. 2008,
pp. 293–302.

[100] C. Guo, O. Pereira, T. Peters, and F. C.-X. Standaert, ‘‘Towards low-
energy leakage-resistant authenticated encryption from the duplex sponge
construction,’’ Cryptology ePrint Archive, Tech. Rep. 2019/193, 2019.
[Online]. Available: https://eprint.iacr.org/2019/193.pdf

VOLUME 10, 2022 50837

M. A. Jimale et al.: Parallel Sponge-Based AE With Side-Channel Protection and Adversary-Invisible Nonces

[101] A. Battistello, J.-S. Coron, E. Prouff, and R. Zeitoun, ‘‘Horizontal side-
channel attacks and countermeasures on the ISW masking scheme,’’
in Cryptographic Hardware and Embedded Systems. Berlin, Germany:
Springer, 2016.

[102] C. D. Walter, ‘‘Sliding windows succumbs to big mac attack,’’ in
Cryptographic Hardware and Embedded Systems. Berlin, Germany:
Springer, 2001.

[103] J. Black, P. Rogaway, T. Shrimpton, and M. Stam, ‘‘An analysis of the
blockcipher-based hash functions from PGV,’’ J. Cryptol., vol. 23, no. 4,
pp. 519–545, Oct. 2010.

[104] C. Dobraunig, F. Koeune, S. Mangard, F. Mendel, and F.-X. Standaert,
‘‘Towards fresh and hybrid re-keying schemes with beyond birthday
security,’’ in Smart Card Research and Advanced Applications. Cham,
Switzerland: Springer, 2016.

MOHAMUD AHMED JIMALE received the
bachelor’s degree in information technology from
SIMAD University, Mogadishu, Somalia, the
master’s degree in computer science from the
University of Malaya, Malaysia, where he is
currently pursuing the Ph.D. degree. His research
interests include cryptography, blockchain, cloud
computing, and the Internet of Everything (IoE).
He held different academic and administrative
positions, including the founding present of the

Jamhuriya University of Science and Technology (JUST) and the Deputy
Head of the Information Technology Department, Dahabshil International
Company, Somalia.

MUHAMMAD REZA Z’ABA received the Bach-
elor of Science (computer) degree from Universiti
Teknologi Malaysia (UTM), in 2004, and the
Ph.D. degree from the Queensland University of
Technology, Australia, in 2010.

He is currently a Senior Lecturer at the
Department of Computer System and Technology,
Faculty of Computer Science and Information
Technology, University of Malaya. He was pre-
viously a Researcher at MIMOS Berhad (from

2010 until February 2018), which is a research arm under the purview of the
Ministry of Science, Technology and InnovationMalaysia. Hismain research
interests include symmetric cryptography (block ciphers and hash functions)
and blockchain-related technologies, including digital currencies and other
areas of information security.

MISS LAIHA BINTI MAT KIAH (Senior Mem-
ber, IEEE) received the Ph.D. degree in informa-
tion security from Royal Holloway, University of
London, U.K., in 2007. Since then, she is an active
Researcher at the Faculty of Computer Science and
Information Technology, UM, in computer science
field particularly in security. She was promoted
to professorship, in 2015. Her main research
interest includes security aspect of computing and
technology fields with variation of applications in

multi and/or trans disciplinary projects. This is evidenced by her publications
and research projects in which she is/was the principal investigator (PI) as
well as co-PIs. As a professional technologist (Ts.), keeping up with the
current trend and demand of ever evolving computing technology field is
crucial to ensure the quality and the impact of her research work. Her current
research interests include cyber security, blockchain technology, the IoT,
and health information exchange. She is an active member of EC Council,
the Malaysian Society for Cryptology Research (MSCR), and the Malaysia
Board of Technologists (Ts.).

MOHD YAMANI IDNA IDRIS (Member, IEEE)
received the B.E. degree in electrical engineer-
ing, the M.Sc. degree in computer science, and
the Ph.D. degree in electrical engineering from
the Universiti Malaya, Kuala Lumpur, Malaysia.
He is currently an Associate Professor with the
Department of Computer System and Technology,
Faculty of Computer Science and Information
Technology, Universiti Malaya. He has published
many articles in reputable journals and has

received many awards for his inventions. His research interests include the
Internet of Things (IoT), information security, embedded systems, image
processing and computer vision, and wireless sensor networks.

NORZIANA JAMIL received the Ph.D. degree in
security in computing, in 2013. She is currently
an Associate Professor at the Universiti Tenaga
Nasional, Malaysia. Her research interests include
cryptography, security for cyber-physical systems,
security analytics, and intelligent systems. She is
an alumni of leadership in innovation fellowship
by U.K. Royal Academy of Engineering, a Project
Leader of various cryptography and cyber security
related research and consultancy projects, has been

actively involving in advisory for cryptography and cyber security projects,
and works with several international prominent researchers and professors.

MOESFA SOEHEILA MOHAMAD received the
Bachelor of Arts degree in mathematics and
computation from Oxford University, in 1997, and
the Master of Science degree in mathematics for
cryptography and communications from the Royal
Holloway College, University of London, in 2011.
She is currently pursuing the Ph.D. degree in IT
with Multimedia University, Cyberjaya, Malaysia.
She has been a Break Researcher at MIMOS
Berhad, since 1997.

MOHD SAUFY ROHMAD received the bache-
lor’s degree in information technology from the
Universiti Teknologi PETRONAS and the Master
of Science degree in computer science fromUiTM,
where he is currently pursuing the Ph.D. degree
in embedded cryptography. He is currently the
Head of robotic, the IoT, and big data with the
Smart Manufacturing Research Institute, UiTM
Shah Alam, where he is also a full-time Senior
Lecturer with the College of Engineering. He was

previously a Researcher at Telekom Malaysia Research and Development
and MIMOS Berhad. He was a SoC Design Engineering at Intel, Penang.
He also involved in a few Industrial IoT projects for livestock and agriculture.

50838 VOLUME 10, 2022

