
Assessing the impact of socio-technical congruence in software development:
a systematic literature review

Binish Raza1, Rodina Ahmad1, *, Mohd H.N.M Nasir1, Shukor S.M Fauzi2,
Muhammad A. Raza3

1Faculty of Computer Science and Information Technology, Universiti Malaya (UM),
50603 Kuala Lumpur, Malaysia

2Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Perlis, Malaysia
3Dept. of Information Technology, Bahauddin Zakariya University, Multan, Pakistan

* Corresponding Author: rodina@um.edu.my

Abstract

Software development is a critical task that depends on coordination among team members and
organizational activities that bring team members together. The literature indicates various
techniques that have been applied to control the coordination level among team members. Notable
among these techniques is social-technical congruence (STC), which helps to measure the
alignment between the social and technical capabilities of an organization and teams at various
stages of software development. The dynamic nature and changes of coordination requirements
make STC a potential research area in this regard. The main objective of this study is to perform a
systematic literature review (SLR) that recognizes and structures existing studies that represent
new evolutionary trends in the field of STC. A SLR is performed of 46 publications from 4 data
sources, including journals, conferences and workshop proceedings, most of which were published
between 2008 and 2019. To this end, a thorough analysis is carried out to elicit the studies based
on 7 research questions in this SLR. The outcome of this SLR is a set of ample research studies
representing various aspects, performance impacts, factors, and evolutionary trends in the field of
STC. Furthermore, STC measurement techniques are classified in two distinct groups, matrix
based and social network analysis-based measures. After a systematic exploration of these aspects,
this study results in new insightful features and state of art of STC. This SLR concludes that some
areas still require further investigation. For instance, (1) STC-related literature exists, but only one
research work mainly focuses on the risk of overwhelming STC (i.e., excessive STC measurement
may overburden the software development process); (2) STC measurement techniques facilitate
the identification of congruence gaps, but no attention has been given towards the unweighted
social network analysis based STC measurement models; (3) STC measurement techniques are
generally applied in the development phase of the project lifecycle, but these measurements are
rarely used in other software development phases, such as the requirement and testing phases or
all phases; and (4) The development factors that effects on STC measurement are rarely focused
by researchers in the context of various domains.

Keywords: Social dependency; socio-technical congruence; socio-technical coordination;
sociotechnical dependency; software development; technical dependency

Kuwait J.Sci., Vol.49, No.(1),January.2022,pp(1-43)

1

1. Introduction

The complex and time-consuming nature of today’s software development tasks increases the time
to project completion. This aspect raises the overall cost of projects and the need to improve
developers’ skills (Hameed et al., 2017; Tahir et al., 2016). To deal with multifaceted and time-
intensive tasks, one common solution is to distribute the tasks between software project team
members who may be working from geographically separated locations. The team distribution and
modular nature of software development reduce labor costs but also increases the risks related to
team collaboration and coordination (Dingsøyr et al., 2017; Alqarni & Qureshi, 2019). Despite
over 30 years of research and evolution of software development tools and techniques, problems
and failures are common in the domain of distributed software development (DSD) (Abbasi et al.,
2019; Alizzaf, 2015). Thereby, DSD is still an intense research area.
 In a distributed environment, the main tasks are to understand the flow of information among
teams (Datta, 2018; Yahyaoui et al., 2020) and identify key individuals in the communication
network (Amirfallah et al., 2019). Teamwork facilitates quick software development while also
adding overwhelming load in terms of task interdependencies with complex technical mechanisms
of software development (Ibrahim et al., 2018). The issue of task interdependency can be addressed
by introducing social capabilities into the software development process (i.e., communication
among team members). Communication serves as a connector between developers who need
coordination to complete interdependent tasks and achieve the same goal (Kuhrmann & Münch,
2016). The organization of communication and coordination activities is a critical task that not only
impacts team performance but also influences product quality.
 One well-known technique of overcoming problems with appropriate communication and
coordination is enhancing socio-technical congruence (STC). This technique involves measuring
and aligning the social and technical capabilities of an organization to support the multiple levels
of software development. In the literature, STC is defined as a fit between task dependencies and
the coordination activities among the people in an organization (Sobri et al., 2017). STC focuses
on the technical and social aspects of the software development process, and fit indicates the right
fusion of technical and social abilities within a distributed team.
 STC helps measure the level of team coordination, which subsequently assists an organization
in identifying gaps that cause delays in work and result in overall project failure (Zhang et al.,
2018). Many existing studies address the impact of STC on the success of software development.
Above all, a systematic literature review (SLR) (Snyder, 2019) is the best choice to produce a
synthesized view of these existing studies, which would assist researchers in capturing new
interpretations of STC. Although STC has received attention in recent research efforts on software
development, no work has systematically reviewed such studies, especially in terms of STC impact
on software quality and team performance. To the best of our knowledge, one previous study
conducted a systematic literature review in the field of STC. One of the objectives of this SLR is
to investigate the impact of the congruence between technical and social capabilities in software
development.

2

 The current SLR synthesizes various aspects of STC, distinguishes various factors that influence
STC calculation, identifies the data sources used for STC measurement, determines the impacts of
STC on software development outcomes, and presents the effects of the nonexistence of STC.
Furthermore, this work covers the latest STC trends. In this SLR, the literature up to the year 2019
was gathered from four popular digital databases: Web of Science (WoS), IEEE, ACM, and
Scopus. The studies selected from literature are validated using quality assessment criteria, which
is designed with the consensus of the authors and various software engineering experts. This SLR
also considers the empirical, theoretical, and case study papers, as well as experimental surveys on
STC.
The main contributions of this work are as follows:

• STC concept addressed in the literature is synthesized and existing techniques to measure
STC are analyzed and presented. The SLR also highlights the components, data sources, and
challenges of STC measurement, thereby assisting organizations and software developers to
become more aware of congruence issues in the hope of reducing risks throughout the software
development process.

• Quality assessment scores are stipulated for the selected STC studies to ensure the inclusion
of high-quality studies from the literature.

• Prospective directions in the field of STC that lack attention from the research community
are identified.
 This paper is divided into several sections. The first section outlines the introduction that
highlights the background, issues, and motivation of this SLR. Section 2 discusses the SLR
methodology used to achieve the proposed objective. Next, the results and a detailed discussion
are presented in sections 3 and 4 respectively. Section 5 discusses some threats to the validity of
this work. The final section concludes this study with some future directions.

2. Research methodology

A SLR is a way to discover, assess, and interpret existing studies interrelated to research questions,
fields, or trends. The main objective of an SLR is to gather evidence from related studies to deduce
results.
 In Kitchenham’s work (Kitchenham & Charters, 2007; Kitchenham, 2004), the systematic
review methodology is described as a collection of various activities that help to accomplish three
core stages: planning, conducting and reporting the SLR. To conduct this SLR, the guidelines
provided by Kitchenham are followed. Furthermore, the software tool StArt (State of the Art
through Systematic Reviews) (Fabbri et al., 2016) is used to support and validate the current
research methodology. The complete review process consists of several steps as described in the
following subsection.

3

2.1 Review procedure

The entire review process consists of three stages which further contain several activities (as shown
in Figure 1). The main objective of this review is to understand the research background and
identify new trends in STC to facilitate further investigation.

Fig. 1. Review procedure

2.1.1 Planning

The planning stage consists of three main activities that help to systematically plan the overall
approach to conduct this SLR.

1) Ad-hoc literature review

An ad-hoc literature review on STC is performed to recognize its impact on software quality and
distributed team performance. To this end, an investigation of relevant articles is conducted first.
The search process focused on the articles related to STC and its impact on software development.
Ad-hoc review papers serve as a guideline to develop a review protocol and formulate the research
questions in this SLR. However, some studies obtained as an output of this pilot search (discussed
in the following section) are included in this SLR along with additional papers obtained after the
screening and selection processes (discussed in subsection (f) of review protocol).

2) Pilot search

To efficiently perform this systematic review, a review protocol was developed. The proposed
protocol helped to identify search terms, data sources, criteria for studies inclusion and exclusion,
quality assessment criteria, and the designing of data extraction form. Further, the review process
was refined by performing a pilot search on a specified selection pool consisting of articles
published over a decade from 2008 to 2019. From the ad-hoc review, it was discovered that the

4

most significant and highest number of publications related to STC was from the year 2008 (Sierra
et al., 2018). For this reason, the selected search period started in 2008.

3) Review protocol

The proposed review protocol comprises six steps (Figure 2) to help perform the SLR
systematically. The detail of each step is given in the following subsections.

a) Research questions
The purpose of this SLR is to identify new trends, techniques, and factors to measure STC in
software development that would improve team performance and software quality.

Fig. 2. Review protocol

The following research questions (RQs) were derived from the objective of this SLR.

RQ1.What are the major components of STC?
RQ2. How did STC evolve over the period from 2008 to 2019?
RQ3.What is the impact of STC on software development outcomes?
RQ4.What are the consequences of non-congruence?
RQ5.What socio-technical data sources are used in literature for STC measurement?
RQ6. What techniques exist to measure STC?
RQ7.Which factors influence STC measurement?

b) Search terms
The ad-hoc search helped identify relevant search terms to extract significant studies. From the
SLR RQs, a list of search terms was identified (Table 1). An initial search with the identified terms
presented numerous irrelevant studies that are not pertinent to software engineering but rather to
social science, artificial intelligence, etc. To refine the search to exclude irrelevant studies,
contextual terms were added to the search term list, such as software development. The search
terms were adjusted to cover as much as possible and also to validate the search accuracy
(Kitchenham & Charters, 2007). Several combinations were first tried in searching for relevant

5

studies, and the outcome was compared with the initial search pool. Finally, the search query was
formulated using the Boolean “AND” and “OR” operators with the key terms selected. The
resulting search query was as follows:

("Socio-technical congruence" OR "Socio technical congruence" OR "Sociotechnical congruence" OR
"Social-technical dependenc* "OR "Social technical dependenc*" OR "Socialtechnical dependenc*") OR
("Social dependenc*" AND "Technical dependenc*") OR (("Social technical Coordination") OR
(("Software development") AND ("Team Coordination" OR "Team Collaboration" OR "Team
Communication")))

 The search query was adapted according to the searched data source limitations (i.e., where a
complex or long search query was not supported). The applied adaptation is found in Appendix A.

Table 1. Search terms

Criteria Keywords
Socio-Technical Congruence Socio-technical congruence

Socio technical congruence
Sociotechnical congruence
Social dependenc*
Technical dependenc*
Social-technical dependenc*
Social technical dependenc*
Social-technical Coordination
Social technical Coordination

Software Development Software Development
Team Coordination
Team Collaboration
Team Communication

c) Data sources

The Web of Science (WoS) core collection, Scopus, IEEE, and ACM were considered as the
primary data sources of relevant studies on STC because they include the key publications
regarding the targeted research. The databases with search criteria for collecting the results are
presented in Table 2. Overall, 449 papers were gathered between 2008 and 2019 from the data
sources using the selected keywords.

Table 2. Data sources with search criteria

Digital Source Criteria
IEEE Explore 2008-2019, Journals, Conferences, Early Access Articles
Web of Science 2008-2019, Proceedings Papers, Articles, Reviews
Scopus 2008-2019, Conference Papers, Articles, Book Chapters
ACM 2008-2019, Conference Papers, Articles

The search procedure focused on keywords based on the objective of this SLR to help identify
studies related to STC and its new trends. In the first stage, 59 duplicate studies were excluded

6

from the gathered results, and 390 studies were left in the selection pool. Subsequently, a systematic
screening of the remaining papers was conducted by reading the titles, keywords, and abstracts;
the output was 181 papers. The results of the initial and selected study pools are shown in Figure
3. The full text screening yielded 60 selected studies. To accommodate for the gray literature, the
reference lists of the selected studies were also investigated, thus adding 18 more papers to the
selected pool and making a collection of 78 articles. After qualifying the inclusion, exclusion, and
quality assessment criteria, a total of 46 papers were collected according to the study objective.

Fig. 3. Proportion of initial and selected study pools

d) Inclusion and exclusion criteria
The main goal of inclusion and exclusion criteria is to investigate the studies that are directly related
to the research questions and to lessen the probability of bias (Kitchenham & Charters, 2007). The
inclusion and exclusion criteria applied to the present SLR are listed in Tables 3 and 4. These
criteria were applied to all studies during the study extraction procedure (see the following section
f).

Table 3. Inclusion criteria

Identifier Criteria
I1 Papers directly related to STC and written in English
I2 Published papers at the journal, workshops, and conferences that directly relate to the research objective
I3 Studies that present some contribution on the use of STC measurement to support software

development activities and also that satisfy the minimum quality threshold
I4 Inclusion of early key cited articles
I5 Articles published from 2008 to 2019

7

Table 4. Exclusion Criteria

Identifier Criteria
E1 Studies wrote other than in English
E2 Studies other than proceedings, reviews and journal papers
E3 Papers that do not focus on STC
E4 Documents that claim to use STC but whose aim is not to illustrate STC itself nor to explain STC

techniques or to identify tools for measuring STC.
E5 Articles where the search keywords are listed only in the references

e) Quality assessment criteria

Quality assessment criteria (QAC) ensure accurate and relevant data extraction from the primary
selected studies. For this review, five criteria were formulated (comprising nine quality test
questions) according to the research scope and to evaluate the relevance of existing studies to this
SLR. Details of these QAC are given in Table 5. The quality assessment for each final study chosen
was attained by computing a score on the basis of objective reporting (problem statement),
approach clarity (research design), sample data and tool selection (data collection), approach
validation (data analysis) and result reliability (conclusion).

Table 5. Quality assessment criteria

Identifier Quality Criteria
Problem Statement
Q1 Are the goals and objectives clearly specified?
Q2 Is there a sufficient explanation of the basic studies?
Design
Q3 Does the research design support the study objectives?
Q4 Is the proposed technique clearly described?
Data Collection
Q5 Is the study supported by a tool?
Q6 Are the measures used in the study applicable for answering the research question?
Data Analysis
Q7 Is there any validation of the proposed method/approach?
Conclusion
Q8 Are the study findings clearly affirmed and supported by the results?
Q9 Is there a clear statement of the limitations and contributions?

The QAC score of each test question was determined using a three-grade scale (full=1,

partial=0.5, and none=0) as depicted in Table 6. The quality test is assessed by the first author and
then verified by the other authors. It is verified that the selected studies discussed the issues related
to each quality criterion or not. Any differences among the authors’ opinion are resolved by
discussion until a common consent was entrenched. The question was scored as: If the study
completely answers the question, the score of associated QA is 1, a partial answer scores 0.5, and
0 means the test question is not addressed in the study.

8

Table 6. Testing studies on quality assessment criteria

Paper
ID

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QAC Score

PS1 1 0.5 0.5 0 0.5 0.5 0.5 0.5 1 5.5
PS2 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 5.5
PS3 1 0.5 1 0.5 0.5 1 0.5 0.5 1 6.5
PS4 1 0.5 1 1 0 0.5 0.5 0.5 0.5 5.5
PS5 1 1 1 0.5 0 0.5 0 1 1 6
PS6 1 0.5 0.5 1 0 1 0 0.5 1 5.5
PS7 1 0.5 0.5 1 1 0.5 0.5 1 0.5 6.5
PS8 1 1 1 1 0.5 0.5 0.5 0.5 1 7
PS9 1 1 1 1 0.5 1 0.5 0.5 1 7.5
PS10 1 1 1 1 0.5 1 0.5 1 0.5 7.5
PS11 1 1 1 1 0 0.5 0 0.5 1 6
PS12 1 0.5 1 1 0.5 1 0.5 1 0.5 7
PS13 1 1 0.5 0.5 0 0.5 1 1 0.5 6
PS14 1 1 0.5 0.5 1 0.5 0.5 0.5 1 6.5
PS15 1 1 1 1 0 1 0 1 0.5 6.5
PS16 0.5 1 1 1 0 1 0.5 0.5 1 6.5
PS17 1 1 0.5 1 0.5 0.5 0.5 0.5 0 5.5
PS18 0.5 1 1 1 0 1 0.5 0.5 1 6.5
PS19 1 0.5 1 1 0.5 0.5 0.5 1 0.5 6.5
PS20 1 0.5 1 1 0 1 0.5 1 1 7
PS21 1 0.5 0.5 0.5 0.5 1 0.5 1 0.5 6
PS22 1 0.5 1 0.5 0.5 0.5 0.5 1 0.5 6
PS23 1 1 1 1 0.5 1 0.5 1 0.5 7.5
PS24 1 1 0.5 0.5 0.5 1 0.5 0.5 0 5.5
PS25 1 0.5 1 1 0.5 1 0.5 1 1 7.5
PS26 1 1 1 1 0.5 1 0.5 0.5 1 7.5
PS27 1 1 0.5 1 1 1 0.5 1 1 8
PS28 1 1 1 1 0.5 1 0.5 1 1 8
PS29 1 0.5 1 1 0.5 0.5 0.5 0.5 1 6.5
PS30 1 0.5 1 1 0.5 1 0.5 1 1 7.5
PS31 1 0.5 1 1 1 0.5 0.5 1 0.5 7
PS32 1 0.5 1 1 0.5 0.5 0.5 0.5 0.5 6
PS33 1 0.5 1 1 0.5 0.5 0.5 1 0.5 6.5
PS34 1 0.5 0.5 1 0 0.5 0.5 1 0.5 5.5
PS35 1 0.5 0.5 1 0 0.5 0.5 0.5 0.5 5
PS36 1 0.5 1 1 0.5 0.5 0.5 1 1 7
PS37 1 0.5 1 1 0.5 0.5 0.5 0.5 0.5 6
PS38 1 1 1 1 0.5 0.5 0.5 1 0.5 7
PS39 1 0.5 1 1 0.5 0.5 0.5 1 0.5 6.5
PS40 1 1 1 1 0.5 0.5 0.5 1 0.5 7
PS41 1 1 1 1 0.5 0.5 0.5 1 0.5 7
PS42 1 1 1 1 1 0.5 0.5 1 0.5 7.5
PS43 1 1 1 1 0.5 1 0.5 0.5 1 7.5
PS44 1 0.5 0 1 0.5 1 0.5 1 1 6.5
PS45 1 1 1 1 0.5 1 0.5 0.5 1 7.5
PS46 1 1 0.5 1 0.5 1 0.5 1 0.5 7

9

Figure 4 indicates the cumulative QAC representation of each study against three scores.

To ensure the quality and reliability of the selected studies, only studies with above-average
quality scores were considered (the threshold was set to 60%). Furthermore, the non-fulfillment of
any two QAC was tolerable in selecting a particular article. The proposed mechanism strengthened
the evidence reported in STC literature and ensured the selection of high-quality studies relevant
to STC for investigation.

Fig. 4. QAC cumulative score graph for selective studies

Figure 5 shows the percentage of the proposed selected and rejected studies based on the QAC
scores.

Fig. 5. Proposed accepted and rejected studies

f) Study extraction procedure

Data extraction was accomplished by a thorough collaboration of the main and co-authors.
Following a detailed discussion and consensus of the team of authors, a study analysis procedure
was devised for the screening (i.e., analysis of the introduction, full content, and conclusion
sections) of each candidate study. To perform this procedure systematically, a data extraction form
was designed iteratively (Appendix B) (Li et al., 2015). The data fields were extracted from the

10

selected studies according to the designed form. First, a general form was constructed to extract
data fields (e.g., publication source, year of publication, study type, domain scope, methodology,
framework, software project team distribution, and project outcomes) from the selected studies.
Then, the form fields were refined iteratively during pilot data extraction (i.e., the inclusion of
research questions being addressed, team coordination method adopted, and team coordination
measure fields). The extraction form refinement process continued until a saturation point was
reached. The entire mechanism helped address the research questions via a multistage analysis of
the full context of the articles under review.

2.1.2 Conducting/Executing

Once the review protocol has been developed and agreed by all authors, the proper execution of
SLR started which further consists of several steps as discussed in the following subsections.

1) Article screening and selection
The screening phase in the current methodology comprises three key steps. First is the systematic
search step to identify the initial STC-related studies. These initial articles were further screened
to extract more relevant STC studies. The second step is known as the additional manual search,
in which the cited references of relevant studies were searched manually. The third step, quality
assessment, entails testing the eligibility of relevant studies using the defined criteria. Each step
was performed according to a detailed consent meeting to guarantee further confidence and the
least biases in the study inclusion process. The overall article screening and selection procedure
are presented in Figure 6.

a) Systematic search
Following the review protocol, study identification was performed through a systematic search that
produced a set of 449 published papers. Of these, 59 duplicate articles were excluded from the
initial pool of studies selected. On the remaining pool, screening was performed using article titles,
abstracts, and keywords, with an outcome of 181 papers left in the pool. Following a thorough
analysis of the full paper texts, 60 papers were finally selected from the article pool for future
investigation.

b) Additional manual search
To accommodate the gray literature (i.e., not available through the usual bibliographic sources,
such as the databases searched for this review), a manual search (snowballing) was additionally
performed on the cited reference list of 60 papers selected, yielding 18 additional articles.

c) Quality assessment
The quality assessment validates the selection of high-quality studies for a systematic review. In
this step, two pools of articles were taken into account (i.e., one pool of 60 articles obtained as part
of the systematic search and another pool of 18 papers extracted using snowballing). The articles

11

that did not efficiently fulfill the defined quality assessment criteria were excluded (as discussed in
the quality fifth step of the review protocol). From the pool of 60 articles, only 34 articles fulfilled
the quality assessment criteria, whereas 12 papers were filtered out from the pool of 18 papers
according to the quality criteria defined, which resulted in 46 (34 + 12) primary studies in the final
selection pool, which should be investigated further.

2) Data analysis

After the primary selection of STC studies, the relevant concepts were extracted from the selected
pool of articles using the proposed study extraction procedure (subsection 1 under section 2.1.2).
The review team performed a multistep analysis of each STC study selected to achieve the answers
to the research questions in this SLR. The analysis outcomes are discussed in section 2.1.3.

Fig. 6. Study Screening and Selection Steps

12

• Demographic data and overview
Before creating a report of the analyzed data, the STC data from the selected studies are synthesized
and presented as a demographic overview. An STC demographic study is important because it
provides an overview of researchers’ contributions in the field of STC over time. Figure 7
demonstrates the total number of STC studies published by four data sources in the period between
2008 and 2019. It can be deduced that the peak publication years were from 2015 to 2018, and
many STC-related works were published in Scopus and WoS. Among the four data sources, ACM
offers the lowest number of STC studies over the 2008-to-2019 period.

Fig. 7. Number of publications per year

 Table 7 provides interesting demographic information on the 46 studies selected in terms of
their focus on addressing the proposed research questions (RQs). It is observed that many studies
answer the seven RQs. For instance, 15 studies (32%) deal with RQ1, 40 studies (87%) refer to
answer RQ2, 16 studies (35%) report on RQ3, 11 studies (24%) answer RQ4, 26 studies (57%)
address RQ5, 12 studies (26%) discuss RQ6, and 13 studies (28%) relate to RQ7.

2.1.3 Results
The report was generated after a thorough analysis of selected studies based on 7 proposed RQs.
The detail of results is discussed in the following section

1) Overview

To investigate how the literature approaches the concept of STC, the related studies were
synthesized via a review procedure with the defined review protocol. A study analysis was then

13

adopted to extract relevant concepts from the selected studies to address the RQs of this SLR. A
complete report on the selected studies is found in Appendix C. This section presents a detailed
analysis of the primary studies selected in the context of the proposed RQs.

2) Outstanding Aspects of STC

In this section, we have summarized the extracted information that represents the main findings of
SLR by answering each RQ (as defined in our review protocol).

RQ1. What are the major components of STC?
The literature contains abundant evidence of STC. To increase STC coverage, interconnected
studies from relevant references of selected publications were included. Each study provides its
conceptualization of STC and highlights the general components. A generic congruence model is
primarily thought to be the reflection of Conway’s Law (Conway, 1968) which asserts that the
organizational design is a replica of the underlying organizational communication structure.
 Through a detailed analysis of literature, the authors in (Wyman, 2003) identified three major
components of a congruence model: input, transformation process, and output.

Table 7. Demographic information and overview of the selected studies

Paper Id Identifier RQ1 RQ2 RQ3 RQ4 RQ5 RQ6 RQ7
PS1 M Maheshwari et al. (2012) √ √ √
PS2 S Datta (2018) √ √ √ √ √
PS3 RS Sangwan(2008) √ √
PS4 M Cataldo et al. (2008) √
PS5 M Cataldo et al. (2006) √ √ √ √
PS6 M Cataldo et al. (2013) √ √ √ √
PS7 J. Portillo Rodríguez et al.(2013) √ √
PS8 M Cataldo et al. (2008) √ √ √ √ √ √
PS9 A Sarma et al. (2008) √ √ √
PS10 LJ Colfer et al. (2016) √ √
PS11 G Valetto et al. (2007) √ √ √ √
PS12 X Wang(2018) √
PS13 I Kwan et al. (2011) √ √ √ √ √
PS14 J Portillo et al. (2014) √ √ √ √
PS15 Irwin Kwan et al. (2009) √ √
PS16 D Šmite et al. (2017) √
PS17 Kate Ehrlich et al. (2008) √ √ √
PS18 F Bolici et al. (2009) √ √
PS19 D Šmite et al. (2012) √ √ √ √
PS20 Li Jiang et al. (2012) √ √ √ √ √
PS21 B Gokpinar wt al. (2010) √ √ √
PS22 G Valetto et al. (2008) √ √
PS23 T Dingsøyr et al. (2018) √ √

14

PS24 ML Bernardi et al. (2012) √ √ √
PS25 Stefanie Betz et al. (2013) √ √
PS26 ME Sosa et al. (2004) √
PS27 S Marczak et al. (2009) √ √ √ √ √
PS28 M Cataldo et al. (2009) √ √
PS29 W Sobri et al. (2017) √ √ √
PS30 I Kwan et al. (2011) √ √ √ √ √
PS31 F Calefato et al. (2017) √ √
PS32 M Cataldo et al. (2008) √ √
PS33 C Bird et al. (2011) √ √ √
PS34 L McLeod et al. (2011) √ √
PS35 ZUR Kiani et al. (2013) √ √
PS36 T Nguyen et al. (2009) √ √
PS37 P Wagstrom et al. (2010) √ √ √ √
PS38 Mark S. Avnet (2016) √ √
PS39 N Bettenburg et al. (2011) √ √ √
PS40 AD de Santana et al. (2013) √
PS41 AJ Suali et al. (2017) √ √ √
PS42 MM Syeed et al. (2013) √ √ √ √
PS43 M Golzadeh (2019) √ √
PS44 M Palyart et al. (2018) √ √
PS45 W Zhang et al. (2019) √ √ √ √ √
PS46 D. A. A. Tamburri et al. (2019) √ √ √
 Relative amount of publications 15 40 16 11 26 12 13
 Weighted of related publications 32% 87% 35% 24% 57% 26% 28%

However, the input comprises different elements including the organization environment, human
resources, and history. Furthermore, the transformation process can consist of teamwork, people
(who do this work), and the organizational structure and culture that transform organizational input
to output in terms of quality and performance measurements. The fit is the alignment of
relationships among all of these elements. Keeping in view the general congruence model, the first
operational STC model was presented by Cataldo et al. (2008) who defined it as a fit between the
socio (consisting of people and culture) and technical (including work and organizational structure)
aspects of an organization. Concerning various development domains such as industrial,
collaborative software development (CSD), DSD, GSD, and OSS, various studies highlight their
socio and technical aspects as input for the STC model and provide the output in terms of
organizational performance.
 For instance, Maheshwari et al. (2012) discussed five major components of the STC model to
facilitate information system management in the industrial domain. The model comprises (1)
technical capabilities, (2) social capabilities, (3) team performance, (4) a development team, and
(5) a fit (calculated from profile deviation) among all of these. Social capabilities focus on
interpersonal interactions, regulations, and standards that characterize these interactions. However,
technical capabilities concern two main aspects of software development: software design and
planning. To measure the congruence between social and technical capabilities, the proposed study

15

focused on the profile deviation approach (indirect measurement) to evaluate the alignment among
a development team. Team performance was measured by computing the process and product
performance. To show the generality of the proposed model, the results were gathered after testing
in every phase of the development life cycle.
 Sarma et al. (2008) reported STC perspectives in the context of CSD. The study identifies two
major STC elements, namely; social and technical artifacts with a process that measures the fit
(based on existing data and instrumentation) among them. Social elements identify the team
structures including direct and indirect communication. Additionally, human characteristics are
also considered such as people’s implicit knowledge and experience with the present condition of
development. However, technical artifacts focus on the overall structure of the code, the code itself,
and numerous dependencies that exist in the code components. The study emphasized that a high
level of congruence among technical and social elements impacts product quality positively.
 Marczak et al. (2009) presented a STC model to investigate the collaboration (derived from the
organizational requirements) among a highly distributed cross-functional team with multiple jobs
or responsibilities and consisting of developers, architects, users, customers, requirements analysts,
and testers. The model computes social aspects from the underlying coordination among the
members of the cross-functional team. The technical dimension consists of the tasks or work units
and dependencies among them. The analysis results indicated that the fit among all of these
elements helps to improve task completion time.
 In the context of distributed software development (DSD), Datta (2018) recognized five STC
model components: (1) developer Interaction (social element), (2) peer developers tasks that are
represented through work-related links (technical element), (3) the fit that measures the
coordination and communication among developers related to the work,(4) a fit strategy (based on
square matrix computations) to calculate the alignment among all, and (5) an output measure as a
software quality that is calculated based on defects identified in the work products.
 Moreover, Cataldo et al. (2008) acknowledged two major elements in DSD: technical and
social. The technical element comprises various aspects of technical decisions such as tasks,
processes, and technology utilized in the development endeavor. The social, second element, is
consists of characteristics related to the individuals in an organization (working in development)
such as their norms, behaviors, and attitudes. The fit, which is based on matrices and social network
analysis (SNA), identifies the relationship among the aforementioned elements that correlate with
the performance towards development productivity.
 Another study also reported a framework for DSD that computes the fit between two key
components: the coordination structure followed by the tasks (work units), and the ongoing actual
social communication activities among the team members (Valetto et al., 2007). The congruence
is calculated based on data extracted from the software repositories. The value of congruence
directly impacts the performance of the development process and organization.
 However, the model discussed by Šmite et al. (2012) comprises five major components: (1)
system structure (technical dimension), (2) organizational structure (social dimension) that consist
of geographically dispersed team members (e.g., prime contractor, direct-sub contractor, hidden
sub-contractor),(3) external factors (e.g., cultural contexts, physical location, relationships, norms,

16

social interactions, events, ideas, people’s behaviors and activities),(4) a congruence mechanism
(based on task allocation strategies), and (5) the effects of congruence in terms of product
completion time.
 In the context of GSD, Sangwan et al. (2008) presented a STC framework that consists of a
system structure, development team (involving project manager, product manager, integration
engineer, supply manager, architect, requirements engineer, and infrastructure manager),
communication and coordination mechanisms, work dependencies among team members, and a
congruence measurement strategy to compute the alignment between shared artifacts. The right
alignment of the system structure with a coordination mechanism results in efficient team
performance.
 Additionally, regarding GSD, Cataldo et al. (2006) referred a STC model with five elements:
(1) social artifacts that indicate the coordination activities performed by individuals in different
geographical locations through computer-mediated communication channels, (2) technical artifacts
that comprise task dependencies among people or team based on formal organizational structures,
(3) geographically dispersed teams, (4) an output that is based on task completion time which
shows the efficiency of team performance, and (5) the fit (based on matrix calculation) that is the
strategy to calculate the coherence among all elements.
 Furthermore, Kwan et al., presented a STC model for GSD that comprises: people, technical
entities (including source code, a bug, a requirement, an assembled binary or a task), social
relationships (identified through actual coordination) and the concept of awareness that affects the
efficiency of STC measurement (Kwan et al., 2011; Kwan & Damian, 2011). The proposed model
calculates STC based on weighted and un-weighted congruence measurements. The computed
value of congruence is used to identify the probability of software build success.
 In the OSS development domain, Jiang et al., defined a three-dimensional STC model contain
two levels; macro and micro (Jiang et al., 2012). The macro-level covers technical and social
elements, such as tasks, processes, tools, techniques, expertise, people, attitudes, organizational
culture, standards, and rules. On the other hand, the micro-level focuses on various factors like the
knowledge, practices, beliefs, goals, skills, norms, and values of stakeholders that impact these
components. The congruence among these two levels is calculated via three congruence
measurements; resource-dependent, task-dependent, and knowledge-dependent congruence, which
reflect the quality of the software.
 Moreover, Bird et al. (2011) reported a STC model for OSS development that describes the
relationship among the social aspect (developers, their communication structure, communication-
related work dependencies, and associations among the developers), the technical aspect that
covers characteristics of software (e.g., component dependencies, software complexity, and quality
of software) and additional human factors (including human experience, programming expertise,
and personal skills). The findings revealed that the quality of the software is associated with the
match between the socio and technical aspects of development efforts.
 Syeed et al. (2013) and Zhang et al. (2019) presented a similar STC strategy consisting of two
main dimensions, namely; social and technical. The social dimension includes communication
related activities among people who are classified according to their roles such as core members,

17

project leaders, and passive or active users. The second dimension is related to technical decisions
such as techniques, tasks, and tasks related to dependencies. Besides the aforementioned
dimensions, a few other factors are also considered effective due to the nature of OSS community
members who may be in different geographical locations with diverse languages, backgrounds,
cultures, and time-zones. However, the two studies presented the outputs of the proposed models
in terms of software quality that directly correlates with the right alignment among both dimensions
(social and technical). Table 8 provides a summary of STC components identified regarding STC
in the literature.

RQ2. How did STC evolve over the time period from 2008 to 2019?
Keywords are important phrases that express the essence of a research article (Zhang et al., 2014)
and also highlight core areas that researchers can pursue. The investigation of the relationships
among keywords leads to discovering new information about the targeted field, thus extending the
boundary of knowledge in the research area. More frequent or dense keyword occurrences indicate
the emerging trends and focused field of research.

To analyze the evolution in STC domain, the keywords and keyword plus were extracted from
the selected pool of studies (Datta, 2018; Cataldo et al., 2013; Portillo, 2013; Cataldo et al., 2008;
Sarma et al., 2008; Colfer et al., 2016; Wang et al., 2018; Kwan et al., 2011; Portillo-Rodríguez et
al., 2014; Kwan et al., 2009; Šmite et al., 2017; Ehrlich et al., 2008; Bolici et al., 2009; Šmite et
al., 2012; Jiang et al., 2012; Gokpinar et al., 2010; Valetto et al., 2008; Zhang et al., 2012; Bernardi
et al., 2012; Betz et al., 2013; Marczak et al., 2009; Cataldo et al., 2009; Sobri et al., 2017; Kwan
& Damian, 2011; Calefato & Herbsleb, 2017; Cataldo et al., 2008; Bird et al., 2011; McLeod L,
MacDonell et al., 2011; Kiani et al., 2013; Nguyen et al., 2008; Wagstrom et al., 2010; Avnet,
2016; Bettenburg, 2011; De Santana et al., 2013; Suali et al., 2017; Syeed et al., 2013; Golzadeh,
2019; Palyart et al., 2017; Zhang et al., 2019; Tamburri et al., 2019) for the period from 2008 to
2019. Furthermore, keywords facilitate the collection of additional information by considering
various aspects like the research article, journal name, year of publication, and research field. In
the present study VOS viewer (Van & Waltman, 2010) software tool was used to analyze the
relationship among different keywords and additionally collected aspects. Correlation analysis of
the keywords and additional aspects highlights the trends in the STC field in the eleven years.
Overall, 3711 keywords were found in the selected set of articles. The records were downloaded
in three batches by dividing the 2008-2019 time period in the ranges of 2008-2011, 2012-2015,
and 2016-2019 (as VOS viewer does not allow more than 500 records) and were saved in .csv
format.

18

Table 8. Summary of STC components identified in the literature

Id Domai
n

STC components
Technical
artifacts

Social artifacts Participant Strategy Output Additional features

Maheshw
ari et
al.,(2012)

Industr
ial
softwar
e
develo
pment

Software design
and planning

Interactions,
regulations, and
standards

Development
team

Profile deviation

Team
performanc
e

-

Sarma et
al.,
(2008)

CSD

Code, code
structure and
code
dependencies

Team direct and
indirect
communication

Development
team

A fit process based
on existing data and
software
instrumentation

Product
quality

Implicit knowledge
and experience

Marczak
et
al.,(2009)

Task or work
units and work

Underlying
coordination
among the
members of a
cross-functional
team

Cross-functional
team (developers,
architects, users,
customers,
requirements
analysts, and
testers)

Congruence derive
from organizational
requirements

Task
completion
time

-

Datta
(2018)

DSD

Peer developers
tasks

Developer
interaction

Developers

A fit process based
on square matrices
computation

Software
quality

-

Cataldo
et al.,
(2008)

Tasks,
processes, and
technology

Communication
activities,
norms,
behaviors, and
attitude

Distributed
development team

A fit process based
on matrices and
SNA

Developme
nt
productivit
y

-

Valetto
et
al.,(2007)

Coordination
structure
followed by the
tasks

Actual ongoing
communication
activities

Team members
(development
team and
stakeholders)

A fit strategy based
on repositories data

Processes
performanc
e

Šmite et
al.,
(2012)

System
structure

Organizational
structure

Team (prime
contractor, direct
and hidden sub-
contractor)

An alignment
computation based
on task allocation
strategies

Product
completion
time

External factors
(cultural contexts,
physical location,
relationships, norms,
social interaction,
events, ideas,
people’s behaviors
and activities)

Sangwan
et
al.,(2008)

GSD

System
structure

Coordination
and
communication
mechanisms

Team (project
manager, product
manager,
integration
engineer, supplier
manager,
architect,
requirements
engineer, and
infrastructure
manager

A mechanism to
compute alignment
between shared
artifacts

Team
performanc
e

-

Cataldo
et
al.,(2006)

Task
dependencies

Coordination
activities
performed
through
computer-
mediated
communication
channels

Geographically
disperse team

A fit strategy based
on matrix
calculation

Team
performanc
e and task
completion
time

Kwan et
al.,
(2011);
Kwan &
Damian,
(2011)

Source code,
bug,
requirement,
task

Developers
relationships,
actual
coordination

Distributed teams
or team members

Congruence
measurement
(weighted and un-
weighted
measurement)

Software
build
success

Concept of
awareness

19

Jiang et
al.,
(2012)

OSS

Tasks,
processes, tools,
techniques,
expertise

People attitudes,
organizational
culture,
standards and
rule

Development
team

Congruence
Measurement
(resource-
dependent, task-
dependent and
knowledge-
dependent
measures)

Software
quality

External factors (the
knowledge,
practices, beliefs,
goals, skills, norms
and values of
stakeholder)

Bird et
al.,
(2011)

Components
dependencies
and complexity

Developers
communication
structure,
communication
related work
dependencies,
developers
associations

Development
team

Identify the
relationship between
socio and technical
aspect by
considering the
human factors

Software
quality

Human factors
(human experience,
programming
expertise, and
personal skills)

Syeed et
al.,(2013)
; Zhang
et
al.,(2019)

Tasks and task
related
dependencies

Communication
related activities

A development
team consisting of
core members,
project leaders,
passive or active
users

Congruence
calculation based on
matrix evaluation

Software
quality

Community factors
(geographical
locations, language,
background, culture
and time zones)

Table 9 provides the data drawn with the VOS viewer software tool that represents four key aspects
of keywords: (1) keyword item aspect that represents the number of keywords co-occurring in
different articles; (2) keywords grouped in clusters (second aspect) on the basis of their field
similarity; (3) the links aspect that defines the occurrence of keywords in different articles; (4) the
link strength aspect that shows the extent of co-occurrence of keyword items. The table highlights
that in the 2016-2019 batch, keywords appear at a higher frequency and are grouped in 61 clusters
with 23198 links and strength of 47141. The last column presents the number of keywords that
reached the threshold value (a minimum of five co-occurrences).

Table 9. Keyword occurrence network aspects with respect to the time period

Keyword
aspects

2008-
2011

2012-
2015

2016-
2019

Total
(Meet threshold of value=5)

Items 369 1671 1675 384
Clusters 27 59 61 19
Links 3650 23098 23198 5382
Strength 3850 35398 47141 26868

The analysis of the co-occurrence of a keyword that meets the minimum threshold is represented
through a network of keywords (as shown in Figure 8). In the network, a node represents a keyword
item, a line shows when two keywords are cited in a document (a thicker line represents higher
cooccurrence); the size denotes the keyword frequency, and the level of similarity to the area of
study is denoted by the distance between two nodes.
 Figure 8 shows 19 clusters of different numbers of items and highlights the keywords with higher
frequencies (co-occurrence values).

20

Fig. 8. Co-occurrence of keywords

Table 10 represents the top 20 co-occurring keywords with their co-occurrence values, which

clearly indicates that the keywords ‘software engineering’, ‘software development’, ‘global
software engineering’, ‘agile software development,’ ‘team collaboration’, ’team communication’,
’inter-team coordination’, ’software quality’ and ‘ socio-technical congruence’ denote the current
focus of researchers in the field of STC.

 Table 10. Top 20 co-occurring keywords

Keywords Occurrences

Software Engineering 186
Software Development 105
Global Software Engineering 101
Agile Software Development 75

Team Collaboration 71

Team Communication 62
Inter-Team Coordination 62
Software Quality 55
Socio-Technical Congruence 53
Distributed software development 45

Interviews 44

Electronic Mail 42

Team Coordination 38

Collaborative Work 35

Data Mining 34
Open Source Software 33
Social Network Analysis 32
Global Software Engineering 32
Team Performance 27
Software Development Team 23

21

The trends of the top 20 keywords (as given in Table 9) for the periods 2008-2011, 2012-2015,
and 2016-2019 are presented in Figure 9, with a higher occurrence of keywords in 2016-2019. In
addition, it is also clear that overall the area of software engineering has received increasingly more
attention from researchers between 2008 and 2019.

Fig. 9. Trends of top 20 co-occurring keywords from 2008 to 2019

RQ3. What is the impact of STC on software development outcomes?
Numerous studies in the literature show the relation of STC with the outcomes of software
development activities. After a thorough analysis, we identified two main outcomes that indicate
the effect of STC on software development in terms of improvement: (1) team or task performance
and (2) software or product quality.
 In the context of the team performance outcome, Maheshwari et al. (2012) used a profile
deviation approach to calculate STC. The authors indicated that team performance will improve if
the technical capabilities (infrastructure, control, and production) and social capabilities
(supportiveness, conflict resolution, and communication) of underdeveloped software are aligned
with each other.
 Similarly, Cataldo et al. (2006) suggested that the task performance of developers is directly
associated with the level of congruence among social (coordination activities) and technical
dependencies (task dependencies). The findings of the study indicated that the higher the
congruence values improve the task/team performance.
 Colfer et al. (2016) identified a mirrored architecture that demonstrates that organizational
design (e.g., mapping of tasks) is a mirror of actual ongoing communication activities. According
to the results of the proposed architecture, the outcome of mirrored systems indicates an
improvement in process or team performance, while the unmirrored systems reflected failure in
performance.

22

 Valetto et al. (2008) also assessed the impact of the STC on software development by exploring
a range of alternative decisions to achieve alignment among social and technical dependencies. The
study summarized the analysis with the conclusion that task or team performance is correlated with
the level of congruence.
 Marczak et al. (2009) proposed a requirements-driven collaboration approach for STC
measurement. The study suggested that task completion time is one of the measures indicative of
team performance. Minimal completion time shows superior performance that can be attained
through a higher level of congruence among the social interactions and technical dependencies
(software specification documents) of development activities.
 Furthermore, Sobri et al. (2017) examined the impact of STC on an incremental model by
analyzing the resolution time (time to resolve a bug) in software development. By applying linear
regression analysis, the results indicated that congruence (among communication logs and file
changed together) has significant effects on task performance.
 Additionally, Sarma et al. (2008) presented another evidence of the correlation between STC
and team performance. The study provided an analysis of the general and aligned communication
effects on STC computation. To compute the value of STC, the authors utilized data
(communication data and task dependencies) extracted from software repositories. The results
showed that a high level of congruence boost team performance.
 On the other hand, in terms of software quality improvement, Datta (2018) analyzed the
correlation between communication and the work structure of an organization to analyze the impact
of STC on software development outcomes. To measure the value of STC, the proposed study
identified the relationship between social (communication activities) and technical (files) artifacts.
The congruence value among both artifacts indicated a lower number of defects in the development
activities, which demonstrates improvement in software quality.
 Suali et al. (2017) also highlighted a method of evaluating the relation of STC with software
development, specifically the STC impact on software quality. The value of STC is computed by
comparing the coordination needs (source code artifacts) with actually performed coordination.
The results were in line with the Datta technique (Datta, 2018), indicating that a lower number of
defects enhance software quality.
 Similarly, Valetto et al. (2007) correlated the impact of STC with the number of defects
identified during development. For STC measurement, the proposed approach was used to
investigate software repositories containing data related to communication activities and the source
code utilized during development. The results illustrated that the number of defects is greater when
the level of congruence is low.
 However, the study by Cataldo et al. (2013) revealed that the chances of software failure increase
when the gap between the actual and required coordination is maximized. According to the
analysis, a high level of congruence (no gap or smaller gap between the actual and required
coordination) leads to enhanced productivity as well as software quality.
 The framework presented by Cataldo et al. (2008) suggests that the value of STC is an indicator
of the way to perceive the unsatisfactory level of coordination needs affect the productivity of

23

development activities. The findings showed that developers who coordinate their tasks with the
group of workers concerned achieve progresses in development productivity.
 Furthermore, Kwan et al. (2011) presented a combination of weighted and un-weighted
congruence framework extended with the concept of awareness. The proposed framework
measures the association between coordination activities and coordination needs to find the success
probability of software builds. The results revealed that a high level of congruence leads to probable
successful builds (an indication of better software quality).
 Portillo-Rodríguez et al. (2014) discussed an agent-based STC architecture and tool that use
agent properties to manage development activities. A case study was carried out using the proposed
tool with new agent features to measure the impact of STC on software development. The outcomes
of the case study denoted improvement in productivity and software quality through achieving an
effective level of coordination.
 Bettenburg (2011) identified the close association between the quality of software and the level
of congruence (measured based on collaboration between stakeholders). The findings suggested
that elevated levels of collaboration among stakeholders positively affect the performance of the
development community and the code quality.
 More recently, Zhang et al. (2019) presented a correlation of STC with moderate bug proneness
in OSS projects. The study proposed a model to compute the value of STC by investigating the
source code and issue tracking systems. It was determined that a lower degree of STC presents
higher numbers of bugs, which indicates poor software quality. Table 11 provides a summary of
STC impacts on software development outcomes.

Table 11. Summary of STC impacts on software development outcomes

Id Approach Social aspect Technical aspect Performance impacts
Maheshwari et al.,
(2012)

Profile deviation Supportiveness, conflict
resolution, and communication

Infrastructure, control,
and production capability

Improved team
performance

Cataldo et al.,
(2006)

Dependency relationship
analysis

Coordination activities Task dependencies Improved task /team
performance

Colfer et al.,
(2016)

Organizational ties
And technical
dependencies analysis

Collocation, employment
relations, and communication
channels

Task dependencies Improved process or team
performance

Valetto et al.,
(2008)

Analysis of software graph
and social network

Communication and
coordination activities

Task and task
dependencies

Improved task, and team
performance, reduced
amount of rework

Marczak et al.,
(2009)

Requirement driven
collaboration analysis

Communication activities Requirement specification
documents

Improvement in
people/team performance

Sobri et al.,(2017) Analysis of actual and
required coordination in
an incremental model

Communication logs(mailing
list)

Files dependency Improved task
performance

Sarma et al.,
(2008)

Analysis of aligned and
general communication
among individuals

Communication activities Task dependencies Reduces bug resolution
time (software quality)

Datta, (2018) Analysis of
communication and work
structure

Communication activities Files dependency Improved software quality

Suali et al., (2017) Analysis of the match
between coordination
needs and actual
coordination

Coordination interactions Source code Improved software quality

Valetto et
al.,(2007)

Investigation of software
repositories

Communication activities Source code, traceability
relationships

Reduces the number of
defects(software quality)

24

Cataldo et al.,
(2013)

Analysis of the match
between coordination
needs and actual
coordination

Communication activities
(email)

Source code Improved development
productivity

Cataldo et al.,
(2008)

Analysis of coordination
needs and coordinating
actions

Coordination activities Tasks (source code) Effective product
management (software
quality)

Kwan et al.,
(2011)

A hybrid model with the
awareness concept

Email Source code Improved build success
rate(software quality)

Portillo-
Rodríguez et al.,
(2014)

Agent-based analysis Communication interactions Source files Improved productivity and
software quality

Bettenburg,(2011) Analysis of stakeholder
coordination

Stakeholder’s communication
logs

Source code entities Improved software quality

Zhang et al.,
(2019)

Analysis of the
congruence relation with
bug proneness

Email, bug, and issue tracking
repositories

Source code Improved software quality

RQ4. What are the consequences or effects of non-congruence?

To address the impacts of non-congruence, several existing studies that highlight the effects of
non-congruence on software development are investigated. The identified non-congruence effects
are analyzed in terms of software failure, project delay, frequent code change requests, bugs in the
development process, poor team performance, and lower product quality.
 Evidence of non-congruence effects related to software failure was addressed in Cataldo et al.
(2009). The research discovered that a gap in the identification of socio- or technical dependencies
causes ultimate software failure. In (Šmite & Galviņa, 2012; Syeed et al. 2013) it was reported that
low STC levels introduce issues in coordination and thus integration failure for components
developed by distributed teams.
 In the context of project delay, Marczak et al. (2009) highlighted the problem of low
coordination from a literature analysis as a gap in coordination that leads to incremented resolution
time of team activities, thus producing project timeline delays.
 Moreover, in Ehrlich et al. (2008) the correlation between gaps in congruence and code changes
was described. Gaps produce low productivity and an increased number of code changes.

Regarding a team communication network, another issue of non-congruence was highlighted
in (Bernardi et al., 2012): the ratio of bugs is higher for committers who coordinate less than other
committers. In Zhang et al. (2012), the coordination patterns of file edits were analyzed, and it was
found that inadequate links among developers lead to bugs in the files.
 The negative effects of low STC on team performance within an organization were addressed
in (Sosa et al., 2004). The results of non-congruence were discussed in (Betz et al., 2013; Sarma
et al., 2008) in terms of poor performance, low quality, and additional costs due to coordination
overhead. Gokpinar et al. (2010) identified the negative result of mismatches among derived and
actual coordination needs as poor complex system quality. Table 12 presents the effects of non-
congruence in various scenarios.

25

Table 12. Consequences of non-congruence

Id Consequences of non-congruence

Cataldo et al., (2009) Software failure

Šmite & Galviņa, (2012); Syeed et al., (2013) Component integration failure

Marczak et al., (2009) • Incremented resolution time
• Delayed project timeline

Ehrlich et al., (2008) • Low productivity
• Increased number of code changes

Bernardi et al., (2012); Zhang et al. (2012) Bugs in files

Sosa et al., (2004); Betz et al., (2013); Sarma et al.,
(2008); Gokpinar et al., (2010)

• Poor performance
• Low quality
• Raised project cost

RQ5. What socio-technical data sources are used in literature for STC measurement?
An in-depth analysis of the selected studies obtained from various data sources used to extract
socio-technical knowledge related to software development was carried out to facilitate STC
computation. Seven types of data sources were found: email data, chat history, VCS, MR,
documentation, qualitative data repository, and miscellaneous data. The miscellaneous category
represents a collection of general data gathered in different ways. A summary of STC-related data
sources and features are given in Table 13. The detail of each data source is as follows:

• Email Data
Several authors (Maheshwari et al., 2012; Datta, 2018; Sangwan & Ros, 2008; Valetto et al., 2007;
Portillo-Rodríguez et al., 2014; Bolici et al., 2009; Bernardi et al., 2012; Sobri et al., 2017; Kwan
& Damian, 2011; Wagstrom et al., 2010; Suali et al., 2017) indicated that email repositories such
as email lists and recoded communication are a source of communication between users,
developers, stakeholders, and other team members. The studies highlighted that email data is
usually utilized more as a data source during software development.

• Chat History
A few studies (Cataldo et al., 2006; Cataldo et al., 2013; Portillo-Rodríguez et al., 2014) discussed
the Internet Relay Chat (IRC) or integrated chats application as a data source that provides
information about the coordination and communication between team members regarding
development activities.

• Version Control System (VCS)
Information related to source code, a historical record of source code including revisions, change
logs, and changed authorships with metadata can be found in VCS. It also stores communication
data related to code changes. Several studies (Maheshwari et al., 2012; Sangwan & Ros, 2008;
Cataldo et al., 2006; Cataldo et al., 2013; Cataldo et al., 2008; Valetto et al., 2007; Šmite et al.,
2012; Jiang et al., 2012; Sobri et al., 2017; Wagstrom et al., 2010; Bettenburg, 2011; Suali et al.,
2017; Syeed et al., 2013; Golzadeh, 2019; Palyart et al., 2017; Zhang et al., 2019; Tamburri et al.,
2019) refer to VCS as a major source for extracting technical information via file dependency
networks (file versus developer network).

26

• Modification Request (MR)
MR is a data repository that stores information related to bugs, their tracking, and task-related
tracking or modification requests of the source code files. Many studies (Datta, 2018; Cataldo et
al., 2006; Cataldo et al., 2013; Cataldo et al., 2008; Kwan et al., 2011; Portillo-Rodríguez et al.,
2014; Ehrlich et al., 2008; Bolici et al., 2009; Bernardi et al., 2012; Bettenburg, 2011; Golzadeh,
2019; Palyart et al., 2017) mention MR as a data source to extract information, such as defect
density, communication-related to bugs, developer versus task network or coordination
requirements in the process of STC computation.
• Documentation

Documents about different stages of software development like project plans, requirement
specifications, software design, implementation specifications, issue reports, and text documents
are included in this data source. Some authors (Sangwan & Ros, 2008; Šmite et al., 2012;
Marczak et al., 2009) addressed documentation utilization for inspection, tracing the task
dependency, tracking the development dependency, and identifying coordination requirements.

• Qualitative Data

Data collected through surveys, questionnaires, or interviews fall in this category. In numerous
studies (Valetto et al., 2007; Ehrlich et al., 2008; Bolici et al., Šmite et al., 2012; Jiang et al., 2012;
Marczak et al., 2009; Tamburri et al., 2019) qualitative data sources are applied for hypothesis
formulation and validating results.
• Miscellaneous

Data obtained via informal ways of communication (e.g., meetings, voice calls, discussion forums),
integrated tools, equipment specifications, skills, and other methods of interactions (e.g.,
reachability, accessibility, and clustering) are included in this category (Datta, 2018; Sangwan &
Ros, 2008; Portillo-Rodríguez et al., 2014; Ehrlich et al., 2008; Bolici et al., 2009; Šmite &
Galviņa, 2012; Jiang et al., 2012; Kwan & Damian, 2011).

RQ6. What techniques exist to measure STC?
STC is a way of measuring and enhancing the development of team performance at both global
and local levels. To measure STC efficiently, existing STC techniques rely on different tools, such
as email, forums, instant messaging, or software repositories. The required information is then
extracted automatically from these tools. However, manual methods of collecting information are
also adopted, such as interviews or surveys. Such automatic or manual STC tools not only help to
measure STC itself but also provide ways to detect and solve problems that may arise during
coordination.
From the set of STC measurement studies, it is observed that congruence analyses have mostly
been applied to the third phase of development (coding phase) of a project. As a result, the source
code file serves as the technical entity in most published STC works. Moreover, it is observed that
social interaction tools (i.e. distribution lists, comments, and Internet Relay Chat (IRC)
communication) are most commonly used for congruence analysis to calculate the actual
coordination measure.

27

Table 13. Summary of STC related data sources and features
Paper Id STC data source Features of data sources

Maheshwari et al., (2012); Datta, (2018); Sangwan & Ros, (2008);
Valetto et al., (2007); Portillo-Rodríguez et al., (2014); Bolici et al.,
(2009); Bernardi et al., (2012); Sobri et al., (2017); Kwan &
Damian,(2011); Wagstrom et al., (2010); Suali et al., (2017)

Email data Email lists, recoded communication

Cataldo et al.,(2006); Cataldo et al., (2013); Portillo-Rodríguez et
al., (2014)

Chat history IRC, integrated chats applications

Maheshwari et al., (2012); Sangwan & Ros, (2008); Cataldo et al.,
(2006); Cataldo et al., (2013); Cataldo et al., (2008); Valetto et al.,
(2007); Šmite et al., (2012); Jiang et al., (2012); Sobri et al., (2017);
Wagstrom et al., (2010); Bettenburg, (2011); Suali et al., (2017);
Syeed et al., (2013); Golzadeh, (2019); Palyart et al., (2017); Zhang
et al., 2019; Tamburri et al., (2019)

Version control system
(VCS)

Source code, a historical record about source
code, code revisions, change logs, changed
authorships code metadata

Datta, (2018); Cataldo et al., (2006); Cataldo et al., (2013); Cataldo
et al.,(2008); Kwan et al., (2011); Portillo-Rodríguez et al., (2014);
Ehrlich et al.,(2008); Bolici et al., (2009); Bernardi et al., (2012);
Bettenburg, (2011); Golzadeh, (2019); Palyart et al., (2017)

Modification request
(MR)

Bugs, task and bug tracking, modification
requests

Sangwan & Ros, (2008); Šmite et al.,(2012); Marczak et al., (2009) Documentation Software plans, requirement specification,
design, implementation specifications,
problem reports, text documents

Valetto et al., (2007);Ehrlich et al., (2008); Bolici et al., Šmite et
al., (2012); Jiang et al., 2012; Marczak et al., (2009); Tamburri et
al., (2019)

Qualitative data Responses from surveys, questionnaires, and
interviews

Datta, (2018); Sangwan & Ros, (2008); Portillo-Rodríguez et al.,
(2014); Ehrlich et al., (2008); Bolici et al., (2009); Šmite & Galviņa,
(2012); Jiang et al., (2012); Kwan & Damian, (2011)

Miscellaneous Record of voice calls, discussion forums,
integrated tools data, equipment specification,
skills

 Various approaches to STC have been proposed in the literature. In this study, these approaches
are classified into two broad categories. The first type consists of approaches in which matrices are
used to represent coordination needs and technical dependencies. The second type of STC approach
employs social network analysis as a means of computing STC.
 Cataldo et al., (Cataldo et al., 2008; Cataldo et al., 2006) used matrices to measure STC. In the
proposed methodology, four different coordination measures were calculated from the task
dependencies and actual coordination. One of these measures is structural congruence, whereby
coordination is calculated among two members of the same team. The second measure is
geographical congruence, which is calculated when both team members are functioning at a similar
physical location. Modification request (MR) communication congruence is the third category of
measurement, which entails measuring when two team members are commenting on the same
modification request. The final coordination measure is IRC communication congruence, which is
calculated manually from IRC logs when two team members refer to the same MR.
 Based on the model proposed by (Cataldo et al., 2006), Kwan et al., (Kwan et al., 2009; Kwan et
al., 2011) presented an improved STC measurement to overcome the limitations of Cataldo et al.’s
work. The authors added a new measurement to their model, namely, weighted congruence. The
model assigns weights to the dependencies that exist among tasks, as well as those among people
and tasks. These weights are measured by calculating the ratio of task dependencies on other tasks
to the total number of dependencies among tasks. The task-to-people ratio weight is calculated
based on the people’s total working hours on a particular task. The model investigated the
communication network to obtain actual coordination by assigning weights to ongoing

28

communication among team members or tasks. The proposed weighted congruence model
successfully detects coordination gaps and suggests the key coordination tasks of the highest
priority that need to be managed for better performance.
 Another vein of STC was presented by Valetto et al. (2007). They proposed an STC
measurement model based on social network analysis (SNA). The proposed model measures
congruence based on the relationships among software artifacts, trust among team members, and
the size of their contribution. The relationships among software artifacts are analyzed through a
network of directed and undirected graphs. Undirected graphs illustrate information regarding
communication interaction, whereas work relationships and dependencies among software artifacts
are represented through directed arcs. The arcs are assigned weights according to the frequency of
modifications made by a team member on the same artifact or dependencies among source files.
To calculate the congruence, the ratio of the relationships among software artifacts is measured
using the proposed algorithm.
 In another study, Gokpinar et al. (2010) also used SNA for congruence measurement. The
authors created the product architecture network, which consists of nodes and arcs that represent
subsystems and links or dependencies among subsystems, respectively. To obtain actual
coordination, the authors created another network called an organizational coordination network
that illustrates the dependencies or communication among engineers and subsystems. To calculate
congruence, the proposed model compares both networks and identifies the coordination gap. The
model reports this gap as a coordination deficit.
More recently, Zhang et al. (2019) proposed a STC model with an additional concept of missing a
developer’s link. The model computes the value of STC at the building level. The effectiveness of
the proposed model was determined through continuous prediction of defects using 10 GitHub
projects. The findings reveal that the addition of STC helps to predict defects at the building level.
Furthermore, the study highlighted the significance of missing developer links over STC values.
However, the value of congruence is calculated by taking the ratio of coordination requirements
over actual coordination.
 Moreover, Kwan et al. (2011) presented an improved STC model by introducing the concept of
awareness in STC measurement. An empirical study was performed on a ship project to measure
STC with awareness via interviews, direct observations, and a questionnaire. The main purpose
was to observe the flow of awareness information among a globally distributed team. After a
detailed analysis, the authors found that the team members are satisfied with simple awareness
approaches, such as email, chat, or meetings. The proposed model also noted the role of a broker
(an experienced team member) in filling the coordination gap among team members. A major
finding pertains to an aggregated STC measurement that can accommodate multiple relationships
to satisfy social as well as technical dependencies.
 A new three-dimensional STC measurement model was proposed (Jiang et al., 2012). The
researchers argued that existing STC research mainly focuses on measuring the congruence
between task dependency and developer coordination, which represents the measure of fit of
developer interaction concerning task dependencies. However, coordination requirements are not
only based on task dependencies but also on other factors, such as sharing of knowledge, resources,

29

and expertise. Therefore, the model adopts two additional concepts: knowledge and resource
dependent congruence with existing congruence measurement to obtain better results.
 Wagstrom et al. (2010) proposed an individualized STC (ISTC) model based on Cataldo et al.’s
(Cataldo et al., 2008; Cataldo et al., 2006) work. For measurement, the proposed model creates an
ISTC matrix from the contribution of each individual person. Congruence is calculated by taking
the ratio of the difference between the expected coordination needs of an individual and the
coordination requirements. The proposed model can identify the difference among simple, normal,
or specific communication that should be conceded to mitigate the task dependencies.
 Portillo-Rodríguez et al. (2014) proposed a multiagent STC model for GSD. The proposed
model utilizes the concept of Kwan et al.’s model (Kwan et al., 2009) and some additional factors
related to environmental needs. It is important to consider environmental factors because they
influence the coordination among globally distributed team members. Unlike Kwan’s work, the
STC of individual users is calculated using three types of weights: socio-cultural distance (SCD),
temporal distance (TD), and geographical distance (GD). With these additional factors (i.e.,
weights), task priorities are incorporated in the proposed model. It is important to note that Portillo
Rodríguez’s model can be incorporated in every phase of the project lifecycle.
 In (Avnet, 2016), a network-based approach was presented to measure team coordination. The
authors used this measurement to calculate the shared cognition of an engineering design team.
The model contained a design structure matrix (DSM) from technical data flow, whereas
information on the actual interaction was collected through a survey of 10 integrated concurrent
engineering (ICE) design teams. A comparison was then performed between DSM and the reported
data to compute the STC measure. With the STC measurement and pair-wise shared mental models,
the proposed technique identified that both team coordination and design products are related to
shared cognition.
 Moreover, Zhang et al. (2019) proposed an STC model based on Cataldo et al.’s framework for
OSS projects. The proposed model embeds some adjustments in a baseline model according to the
OSS environment to measure STC on the file level. The proposed work added a new derivative
matrix, Missing Developer Links (MDL), which helps to measure the coordination breakdown
among the OSS developers. The values of STC and MDL were computed from the file and
developer networks, respectively. The method calculates the relationship among the STC/MDL
and bug proneness that correlate with software quality. The effectiveness of the proposed method
was validated through an empirical study on five OSS projects. The results show improvement in
bug prediction, which enhances software quality.
 To summarize, various STC measuring techniques are cross-compared in this study using five
features: technique name, major characteristics, strategy, metrics, result validation, and
measurement dimensions, as given in Table 14.

RQ7. Which factors influence STC measurement?
According to various organization forms, such as organizational distributed development,
collaborated development, global distribution, product development, and open-source, the
literature highlights numerous factors that influence STC measurement. In an organization, the

30

level of coordination among teams varies significantly according to three major factors: the degree
of module coupling, organizational architecture changes, and nonfunctional requirements.
However, many other factors influence organizational technical decisions, such as geographic
distance, language barriers, socio-cultural differences, domain expertise, etc.

 Table 14. Summary of STC measurement techniques

Id Name Characteristics Strategy Metric Empiricall
y Validated

Measurement
Dimensions

Cataldo et
al., (2008);
Cataldo et
al., (2006)

STC framework First congruence model based
on Conway’s law.

Matrix Un-weighted Yes • Structural congruence
• Modification request

(MR)
• IRC logs

Kwan et al.,
(2009)

Software build
success STC model

An improved weighted
congruence model based on
Cataldo et al.’s (2008) work.

Matrix Weighted Yes • Task dependencies
• Communication pattern
• Team working hours

Valetto et
al., (2007)

STC model based on
software repositories

A model based on weighted
social network analysis
extracted from software
repositories.

SNA Weighted Yes • Software repositories

Gokpinar et
al., (2010)

Product quality STC
model

SNA-based congruence
measurement. Two networks
are analyzed for calculation:
product architecture network,
and organizational coordination
network.

SNA Weighted Yes • Product architecture
network

• Organizational
coordination network

• Communication through
a distributed list

Kwan et
al.,(2011)

STC model with
awareness

An improved STC model with a
concept of awareness.

Matrix with
team
awareness

Weighted Yes • Interviews
• Direct observations
• Questionnaire

Jiang et al.,
(2012)

Team performance
STC model

An improved three-dimensional
STC measurement.

Matrix Un-weighted Yes • Task dependency
• Knowledge dependency
• Resource dependency

Wagstrom et
al., (2010)

Individualized STC
model

An individualized STC (ISTC)
model based on Cataldo et al.’s
(Cataldo et al., 2008; Cataldo et
al., 2006) studies.

Matrix Weighted Yes ISTC matrix

Portillo-
Rodríguez et
al., (2014)

Agents-based STC
model

A multi agent STC model based
on Kwan et al. (Kwan et al.,
2009) for GSD.

Matrix with
agent
properties

Weighted Yes • Socio-cultural distance
• Temporal distance
• Geographical distance

Avnet,
(2016)

SNA-based STC
model

An improved network-based
approach to measure
congruence and shared
cognition among an engineering
design team.

SNA and
matrix

Weighted Yes • Design structure matrix
• Survey integrated

concurrent engineering

Zhang et al.,
(2019)

File-Level STC
model

A model for OSS development
for bug prediction on file-level.

SNA and
matrix

Weighted Yes • Files
• MDL

 An organization will achieve high congruence when its coordination capabilities match or
surpass the coordination requirements. According to Cataldo et al. (2008) congruence is defined
as the match between the organizational design and abilities to carry out a task. The two main
factors that influence congruence calculation are organizational temporal dependencies
(dependencies among the team and assigned tasks) and organizational structure (the method of
coordination and communication).

31

 However, Sobri et al. (2017) highlighted numerous factors from the literature that contribute to
successful coordination among team members within an organization. In terms of team
coordination, Kwan et al. (2011) identified many explicit (i.e., email, chat, meetings) and implicit
communication mechanisms (i.e., listening or learning from other work) that contribute to
strengthening the coordination among distributed teams. To make coordination more successful,
Calefato et al. (2012) added two more factors to those of (Kwan et al., 2011): managers’
contributions and instilled trust among team members. According to Cataldo et al. (2008), the
success of project development is highly dependent on the structural patterns of communication,
which affect project performance. Other studies (Kwan et al., 2011; Kiani et al., 2013; Nguyen et
al., 2008) presented yet another factor, awareness among team members, which influences the
mechanism of coordination.
 Moreover, distributed software development (Jiang et al., 2012) classified STC influencing
factors in two categories: macro-level and micro-level. Macro-level factors consist of team values,
practices, knowledge, expertise, beliefs, behaviors, norms, and aims of the stakeholders. Micro
level factors affect both the technical and social aspects of software development. Technical
components comprise project tasks, knowledge, mechanisms, techniques, and tools. However,
social aspects comprise components related to people, such as norms, culture, behavior, and team
attitude. For successful project development, it is necessary to attain congruence at both levels.
 Dynamic social network analysis (SNA) is one means of calculating STC in collaborated
development. In Datta (2018), an SNA-based STC measurement technique was addressed that is
significantly affected by one factor, which is the relationship among organizational entities (e.g.,
tasks, resources, and people). In the literature, additional factors identified are related to task
elements, such as the attributes of developers involved in the task, lines of code to be written, task
assignment, and task priority, which can affect task completion time and the resolution of
modification requests. In the context of collaborative development, (Bird et al., 2011) identified
critical human factors that affect the process of software development. The human factors identified
(for instance, the number of team members working on a file and the number who left the
organization before project completion) are linked to software quality and team performance.
 Based on the work of (Kwan et al., 2011) Portillo Rodríguez et al. (2014) highlighted a range of
factors that can influence the coordination mechanism in global software development. Socio
cultural distance (SCD) is one of the factors identified and is calculated based on the native
countries in the team included in the development process. Another factor is Temporal Distance
(TD), which is based on the time difference between the locations of the working team members.
To attain a sufficient level of coordination, it is assumed that more communication is necessary
among team members from different time zones. To determine the STC for each user in a team,
these factors are assigned some weights based on cultural and temporal distance.
 In terms of product development, Cataldo et al. (2013) identified two significant contextual
factors: product and process maturity. These impact the relationship among software dependencies,
coordination needs, and product quality.
 Moreover, McLeod et al. (2011) recognized three classes of factors that influence STC
measurement. The first class consists of people and their actions, such as developers, top

32

management, project team, external agents, users, and social interaction. The other class is project
content and involves project goals and objectives, scope, resources, characteristics, and technology.
The last class consists of factors related to the development process, for instance, requirement
determination, utilization of a standard methodology, project management, user participation, user
training, and change management.
 In the context of OSS development, Tamburri et al. (2019) presented the relationship between
STC and open-source community smells that define the suboptimal organizational patterns and
socio-technical characteristics. The fewer the community smells, the higher the STC value that
improves software quality. A complete list of factors affecting STC measurement is given in Table
15

Table 15. Summary of factors influencing STC measurement

Id Context Factors Results
Cataldo et al.,
(2008)

Organizational
distributed
development

• Temporal dependencies
• Organizational structure

Improved team coordination and
communication

Kwan et al.,(2011);
Kiani et al.,
(2013); Nguyen et
al., (2008)

• Explicit and implicit communication
• Awareness

• Strengthening the
coordination mechanism

• Contributing to the
mechanism of successful
coordination

Calefato et
al.,(2012)

• Trust
• Team leadership

Makes coordination successful

Cataldo et
al.,(2008) Structural patterns of communication

Improved project performance and
outcome as successful project
development.

Jiang et al., (2012)

• Technical aspects
o Tasks, knowledge, mechanisms, techniques,

and tools
• Social aspects

o Norms, culture, behaviors, and attitudes

Successful project development

Datta, (2018)

Collaborative
development

Relationship among organizational entities • Identified dependencies
among tasks, resources, and
individuals

• Identified needs for
coordination requirements

Bird et al., (2011) Human factors • Improved software
development mechanism

• Reduced software failure
Portillo- Rodríguez
et al.,(2014) GSD • Socio-cultural distance (SCD)

• Temporal distance (TD)
Improved coordination mechanism
in GSD

Cataldo et al.,
(2013)

Product
development

• Product maturity
• Process maturity

• Identified dependencies
among software components,
coordination requirements

• High software quality
McLeod et al.,
(2011)

• Product, and people and their actions
o Developers, top management, project team,

external agents, users, and social interaction

• Project content
o Project goals and objectives, scope, resources,

characteristics, and technology

• Development process
o Requirement determination, utilization of a

standard methodology, project management, user
participation, user training, and change
management

• Improved team performance
• High quality project

Tamburri et al.,
(2019)

OSS • Sub-optimal organizational patterns
• Socio-technical characteristics

• Improved Organizational
Quality

33

3. Discussion

3.1 Principal findings
From a detailed analysis of the selected study pool in the context of the proposed research
questions, several aspects of STC are recognized. For instance, each STC study provides its own
conceptualization of STC components according to the development environment (as discussed in
RQ1). Most studies focus on the domains of DSD, GSD, and OSS development. However, the first
operational STC model was presented by Cataldo et al., (2006) for organizational distributed
software development. Upon investigating studies to answer the second RQ, it was found that STC
measurements have been more geared towards software engineering and global software
development. The topmost co-occurring keywords prevalent in the field of STC are; team
collaboration, communication, and inter-team coordination. Most STC-related studies present
quantitative features of STC. The quantitative calculation of STC enables the analysis and proposal
of scores for the social and technical concerns of a project much more easily.
 Several studies were identified that illustrate the importance of STC in improving team
performance and project quality (RQ3). From a practitioner’s point of view, it was identified that
STC measurement better assists managers with inspecting and controlling team members’
activities, which in turn enhances team performance and software quality.
 In contrast to the benefits, the existence of non-congruence presents negative impacts on software
development like software failure, poor task performance, and low software quality (as presented
in RQ4).
Through an analysis of the selected studies, seven major types of data sources were explored; email
data, chat history, VCS, MR, documentation, qualitative data, and a miscellaneous data repository,
which were used to extract social and technical information for STC calculation (RQ5).
 The present SLR classifies STC techniques into two groups: matrix-based STC techniques and
social network analysis (SNA) techniques. These techniques can be further categorized as weighted
and unweighted measurements (as highlighted in RQ6). A notable aspect is that, thus far, only
weighted measurement methods have been exploited in SNA approaches. Thus, SNA with
unweighted measurement still needs to be explored.
 Finally, this study summarizes the major factors affecting STC measurement and consequently
on the results of software development (team performance and software quality). In addition,
numerous key factors (with various sub-factors) influencing STC calculation were determined. The
factors relate to different fields, such as organizational, collaborative global software development,
product development, and open-source projects (RQ7). Figure 10 presents the taxonomy of RQs
and SLR findings.

3.2 Future implications
After analyzing the selected studies, the following research directions were identified. Existing
STC studies highlight the benefits and importance of STC, but only one study was found to
primarily discuss the risk of overwhelming STC. Risk is crucial to be investigated and explored

34

further to ensure the success of any projects. Hence, there is an urgent need to motivate more work
in this area.

The analysis of existing STC measurement techniques demonstrates that existing techniques
utilized weighted and unweighted STC measurement metrics. However, STC calculation based on
the unweighted SNA mechanism still needs in its infancy. Furthermore, it seems obvious that STC
measurement is mainly employed in the development phase of the project lifecycle. Few research
works discuss STC application in other phases (e.g., requirement, testing, or all phases) of the
project lifecycle. It was observed that STC is a multidimensional technique covering all levels of
the projects lifecycle. Thus, more research evidence is still required to verify the significance of
using STC in different phases of software development. Subsequently, using STC techniques to
identified congruence gaps at different phases of development may be a prospective area of
research in the future. Likewise, the literature shows that STC measurement techniques are
influenced by numerous factors, which impels the need to explore and investigate more in this area.

Fig. 10. Taxonomy of RQs and findings

4. Threats to validity

To avoid future replications and other aspects of this SLR, some limitations and concerns must be
considered. For this SLR, validity threats were classified into three categories: internal, external,
and conclusion validity.
 Internal validity concerns may include biased decisions that may occur during study selection
and data extraction. For instance, studies that do not provide flawless result descriptions may not
be included in the selected paper pool. To mitigate this validity threat, the authors selected and

35

synthesized the studies. All authors cross-checked the results and discussed the outcomes until the
final consensus was reached.
 The external validity threat is apprehensive to SLR results and indicates to which degree the
review topic is represented by the primary studies selected. This threat was reduced by ensuring
that all potential studies related to the research area were covered. To this end, an extensive search
was performed in four digital data sources using different related queries. Furthermore, to mitigate
any limitations, iterative search criteria were employed, and the search results were validated via
discussion among all authors. All backward references in the selected studies were also searched
manually to ensure the inclusion of all relevant studies.
 The last validity threat, conclusion validity, is related to the exclusion of some studies that should
have been included in this SLR. This threat was mitigated by performing a systematic selection
procedure. The selection process was performed based on the defined inclusion and exclusion
criteria that were carefully designed after consensus and discussion by the co-authors to reduce the
risk associated with the exclusion of relevant studies.

5. Conclusion

In this study, an SLR was conducted about STC key aspects and new trends. More specifically, the
main aim of this SLR was to comprehend the concept and efficiency of the STC mechanism
towards its impact on software development.
 This SLR identified 46 studies relevant to the seven research questions from four large data
sources. After a detailed analysis of the selected studies, the study has identified six major
components of a STC model according to the development context, shown significant contribution
in different domains of software engineering such as GSD, Agile development, and team
performance, and identified the impact of STC in terms of four performance metrics (i.e.,).
Additionally, the study revealed different disasters due to lack of congruence in software
development and classified STC data sources into seven major categories depending on the
resources used to extract technical and social information. Furthermore, it is concluded that each
existing STC technique is an adaptation of either Cataldo et al. (2008) or Kwan et al.’s (2011)
work. This study classified these techniques into 2 groups: (1) matrix-based calculation based on
unweighted and weighted measurement (2) social network analysis based on weighted
measurement. However, the existing STC measurements face challenges due to numerous
influencing factors.
 Many studies have discussed different aspects and prominent concepts about STC. However,
some limitations have been identified from the thorough analysis of selected studies. This SLR led
to the proposal of four investigation directions: (1) identifying the risks of overwhelming STC, (2)
determine an STC measurement to overcome the communication gaps identified using unweighted
SNA technique, (3) use STC performance measures in different and all phases of the project
lifecycle, and (4) explore STC influencing factors.

36

 The utility of this SLR for software developers, managers, and researchers lies in the recognition
of core aspects of STC and gaps in the existing literature. We expect the findings of this SLR to
enhance knowledge about STC towards successful and less error-prone software development.

ACKNOWLEDGMENTS

We wish to acknowledge the Universiti Malaya grant GPF097B-2020 for partially supporting this
research and our colleague Dr. Khubaib Amjad Alam (KAA) for helping with the review process.

References

Abbasi, F. A., Burdi, A., KHAN, R. S., & NAQVI, S. H. F. (2019). Requirement Engineering
Challenges in Distributed Software Development. Sindh University Research Journal -Science
Series. 51. 465-. 10.26692/surj/2019.09.74.

Aljazzaf, Z. M. (2015). Modelling and measuring the quality of online services. Kuwait Journal
of Science, 42(3).

Alqarni, T. & Qureshi, M. R. (2019). A unified model to manage requirement engineering for
global software development. Kuwait Journal of Science, 46: 33-42.

Amirfallah, A., Trautsch, F., Grabowski, J., & Herbold, S. (2019). A systematic mapping study
of developer social network research. ArXiv, abs/1902.07499.

Avnet, M. S. (2016). A network based analysis of team coordination and shared cognition in
systems engineering. Systems Engineering, 19: 395-408.

Bernardi, M. L., Canfora, G., Lucca, G. A. D., Penta, M. D. & Distante, D. (2011). Do
Developers Introduce Bugs When They Do Not Communicate? The Case of Eclipse and Mozilla.
2012 16th European Conference on Software Maintenance and Reengineering, 27-30 March 2012.
139-148.

Bettenburg, N. (2011). Mining development repositories to study the impact of collaboration on
software systems. Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, ACM, 376-379.

Betz, S., Mite, D., Fricker, S., Moss, A., Afzal, W., Svahnberg, M., Wohlin, C., Borstler, J. &
Gorschek, T. (2013). An evolutionary perspective on socio-technical congruence: The rubber band
effect. Replication in Empirical Software Engineering Research (RESER), 2013 3rd International
Workshop on, IEEE, 15-24.

37

Bird, C., Murphy, B., Nagappan, N. & Zimmermann, T. (2011). Empirical software
engineering at microsoft research. Proceedings of the ACM 2011 conference on Computer
supported cooperative work, ACM, 143-150.

Bolici, F., Howison, J. & Crowston, K. (2009). Coordination without discussion? Socio-technical
congruence and Stigmergy in Free and Open Source Software projects. Socio-Technical
Congruence Workshop in conj Intl Conf on Software Engineering, Vancouver, Canada.

Brooks Jr, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, Anniversary
Edition, 2/E, Pearson Education India.

Calefato, F., Lanubile, F. & Novielli, N. (2017). A preliminary analysis on the effects of
propensity to trust in distributed software development. Global Software Engineering (ICGSE),
2017 IEEE 12th International Conference on, IEEE, 56-60.

Cataldo, M. & Herbsleb, J. D. (2008). Communication networks in geographically distributed
software development. Proceedings of the 2008 ACM conference on Computer supported
cooperative work. San Diego, CA, USA: ACM.

Cataldo, M. & Herbsleb, J. D. (2008). Communication patterns in geographically
distributed software development and engineers' contributions to the development effort.
Proceedings of the 2008 international workshop on Cooperative and human aspects of software
engineering, ACM, 25-28.

Cataldo, M. & Herbsleb, J. D. (2013). Coordination breakdowns and their impact on development
productivity and software failures. IEEE Transactions on Software Engineering, 39: 343-360.

Cataldo, M., Herbsleb, J. D. & Carley, K. M. (2008). Socio-technical congruence: a framework
for assessing the impact of technical and work dependencies on software development productivity.
Proceedings of the Second ACM-IEEE international symposium on Empirical software
engineering and measurement, ACM, 2-11.

Cataldo, M., Mockus, A., Roberts, J. A. & Herbsleb, J. D. (2009). Software dependencies, work
dependencies, and their impact on failures. IEEE Transactions on Software Engineering, 35: 864-
878.

Cataldo, M., Wagstrom, P. A., Herbsleb, J. D. & Carley, K. M. (2006). Identification of
coordination requirements: implications for the Design of collaboration and awareness tools.
Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work,
ACM, 353-362.

38

Colfer, L. J. & Baldwin, C. Y. (2016). The mirroring hypothesis: theory, evidence, and
exceptions. Industrial and Corporate Change, 25: 709-738.

Conway, M. E. (1968). How do committees invent. Datamation, 14: 28-31.

Datta, S. (2018). How does developer interaction relate to software quality? An examination of
product development data. Empirical Software Engineering, 23: 1153-1187.

De Santana, A. M., Da Silva, F. Q., De Miranda, R. C., Mascaro, A. A., Gouveia, T. B.,
Monteiro, C. V. & Santos, A. L. (2013). Relationships Between Communication Structure and
Software Architecture: An Empirical Investigation of the Conway's Law at the Federal University
of Pernambuco. Replication in Empirical Software Engineering Research (RESER), 2013 3rd
International Workshop on, IEEE, 34-42.

Dingsøyr, T., Moe, N.B., Fægri, T.E. (2018). Exploring software development at the very large-
scale: a revelatory case study and research agenda for agile method adaptation. Empir Software
Eng 23: 490–520 (2018). https://doi.org/10.1007/s10664-017-9524-2

Dingsøyr, T., Rolland, K., Moe, N. B., & Seim, E. A. (2017). Coordination in multi-team
programmes: An investigation of the group mode in large-scale agile software development.
Procedia Computer Science, 121:123-128. doi:https://doi.org/10.1016/j.procs.2017.11.017

Ehrlich, K., Helander, M., Valetto, G., Davies, S. & Williams, C. (2008). An Analysis of
Congruence Gaps and Their Effect on Distributed Software Development.

Fabbri, S., Silva, C., Hernandes, E., Octaviano, F., Di Thommazo, A. & Belgamo, A. (2016).
Improvements in the StArt tool to better support the systematic review process. Proceedings of the
20th International Conference on Evaluation and Assessment in Software Engineering, ACM, 21.

Gokpinar, B., Hopp, W. J. & Iravani, S. M. (2010). The impact of misalignment of
organizational structure and product architecture on quality in complex product development.
Management science, 56: 468-484.

Golzadeh, M. (2019). Analysing socio-technical congruence in the package dependency network
of Cargo. Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. Tallinn, Estonia: ACM.

Hameed, H., Khalid, H., Qamar, U., & Abass, S. K. (2017). Optimizing software project
management staffing and work-force deployment processes using swarm intelligence, Computing
Conference, London, 2017, pp. 78-84, doi: 10.1109/SAI.2017.8252084.

39

Ibrahim, Z., Md Johar, M. G., & Abdul Rahman, N. (2018). The Quality of Teamwork on
Methodology in Software Development Workflow. International Journal of Engineering and
Technology, Vol 7: No 4.28 (2018), 510-525. doi: 10.14419/ijet.v7i4.28.22641

Jiang, L., Carley, K. M. & Eberlein, A. (2012). Assessing team performance from a socio-
technical congruence perspective. Proceedings of the International Conference on Software and
System Process, IEEE Press, 160-169.

Kiani, Z. U. R., Smite, D. & Riaz, A. (2013). Measuring Awareness in Cross-Team
Collaborations-Distance Matters. Global Software Engineering (ICGSE), 2013 IEEE 8th
International Conference on, IEEE, 71-79.

Kitchenham, B. (2004). Procedures for performing systematic reviews. Keele, UK, Keele
University, 33: 1-26.

Kitchenham, B. & Charters, S. (2007). Guidelines for performing Systematic Literature Reviews
in Software Engineering.

Kuhrmann, M. & Münch, J. (2016). Distributed software development with one hand tied behind
the back: a course unit to experience the role of communication in GSD. Global Software
Engineering Workshops (ICGSEW), 2016 IEEE 11th International Conference on, IEEE, 25-30.

Kwan, I. & Damian, D. (2011). Extending socio-technical congruence with awareness
relationships. Proceedings of the 4th international workshop on Social software engineering,
ACM, 23-30.

Kwan, I., Schroter, A. & Damian, D. (2011). Does socio-technical congruence have an effect on
software build success? A study of coordination in a software project. IEEE Transactions on
Software Engineering, 37: 307-324.

Kwan, I., Schröter, A. & Damian, D.(2009). A weighted congruence measure. Workshop on
SocioTechnical Congruence, 1-4.

Li, T., Vedula, S. S., Hadar, N., Parkin, C., Lau, J., & Dickersin, K. (2015). Innovations in data
collection, management, and archiving for systematic reviews. Ann Intern Med, 162(4): 287-294.
doi: 10.7326/m14-1603

Maheshwari, M., Kumar, U. & Kumar, V. (2012). Alignment between social and technical
capability in software development teams: An empirical study. Team Performance Management:
An International Journal, 18: 7-26.

40

Marczak, S., Kwan, I. & Damian, D. (2009). Investigating collaboration driven by requirements
in cross-functional software teams. Requirements: Communication, Understanding and Softskills,
2009 Collaboration and Intercultural Issues on, IEEE, 15-22.

Mcleod, L. & Macdonell, S. G. (2011). Factors that affect software systems development project
outcomes: A survey of research. ACM Computing Surveys (CSUR), 43: 24.

Nguyen, T., Wolf, T. & Damian, D. (2008). Global software development and delay: Does
distance still matter? Global Software Engineering, 2008. ICGSE 2008. IEEE International
Conference on, 2008. IEEE, 45-54.

Palyart, M., Murphy, G. C. & Masrani, V. (2018). A Study of Social Interactions in Open Source
Component Use. IEEE Transactions on Software Engineering, 44: 1132-1145.

Portillo-Rodríguez, J., Vizcaíno, A., Piattini, M. & Beecham, S. (2014). Using agents to manage
socio-technical congruence in a global software engineering project. Information Sciences, 264:
230-259.

Portillo Rodríguez, J. (2013). An agent architecture to improve coordination and communication
in GSE.

Sangwan, R. S. & Ros, J. (2008). Architecture leadership and management in globally distributed
software development. Proceedings of the first international workshop on Leadership and
management in software architecture, ACM, 17-22.

Sarma, A., Herbsleb, J. & Van Der Hoek, A. (2008). Challenges in measuring, understanding,
and achieving social-technical congruence. Proceedings of Socio-Technical Congruence
Workshop, In Conjunction With the International Conference on Software Engineering.

Sierra, J. M., Vizcaíno, A., Genero, M. & Piattini, M. (2018). A systematic mapping study about
socio-technical congruence. Information and Software Technology, 94: 111-129.

Šmite, D. & Galviņa, Z. (2012). Socio-technical congruence sabotaged by a hidden onshore
outsourcing relationship: lessons learned from an empirical study. International Conference on
Product Focused Software Process Improvement, Springer, 190-202.

Šmite, D., Moe, N. B., Šāblis, A. & Wohlin, C. (2017). Software teams and their knowledge
networks in large-scale software development. Information and Software Technology, 86: 71-86.

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines.
Journal of Business Research, 104: 333-339. doi:https://doi.org/10.1016/j.jbusres.2019.07.039

41

Sobri, W., Fauzi, S., Nasir, M., Ahmad, R. & Suali, A. (2017). A mechanism to assess the
relationship between socio-technical congruence and project performance in incremental model.
Journal of Fundamental and Applied Sciences, 9: 58-74.

Sosa, M. E., Eppinger, S. D. & Rowles, C. M. (2004). The misalignment of product architecture
and organizational structure in complex product development. Management science, 50: 1674-
1689.

Suali, A., Fauzi, S., Nasir, M. & Sobri, W. (2017). A brief method to assess the association of
socio and technical dependencies on software quality. Journal of Fundamental and Applied
Sciences, 9: 101-114.

Syeed, M., Hammouda, I. & Berko, C.(2013). Exploring Socio-Technical Dependencies in Open
Source Software Projects: Towards an Automated Data-driven Approach. Proceedings of
International Conference on Making Sense of Converging Media, ACM, 273.

Tahir, M., Khan, F., Babar, M., Arif, F. & Khan, F. (2016). Framework for Better Reusability
in Component Based Software Engineering. the Journal of Applied Environmental and Biological
Sciences (JAEBS), 6: 77-81.

Tamburri, D. A. A., Palomba, F. & Kazman, R. (2019). Exploring Community Smells in Open-
Source: An Automated Approach. IEEE Transactions on Software Engineering, 1-1.

Valetto, G., Chulani, S. & Williams, C. (2008). Balancing the value and risk of socio-technical
congruence. Workshop on Sociotechnical Congruence.

Valetto, G., Helander, M., Ehrlich, K., Chulani, S., Wegman, M. & Williams, C. (2007). Using
software repositories to investigate socio-technical congruence in development projects.
Proceedings of the Fourth International Workshop on Mining Software Repositories, IEEE
Computer Society, 25.

Van Eck, N. J. & Waltman, L. (2010). Software survey: VOSviewer, a computer program for
bibliometric mapping. Scientometrics, 84: 523-538.

Wagstrom, P., Herbsleb, J. D. & Carley, K. M.(2010). Communication, team performance, and
the individual: bridging technical dependencies. Academy of Management Proceedings, Academy
of Management Briarcliff Manor, NY 10510, 1-7.

Wang, X., Xiao, L., Yang, Y., Xu, X. & Jiang, Y. (2018). Identifying TraIn: a neglected form of
socio-technical incongruence. Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings. Gothenburg, Sweden: ACM.

42

Wyman, O. (2003). The congruence model: a roadmap for understanding organizational
performance. Oliver Wyman Group. http://www. oliverwyman.com/ow/pdf_files/
Congruence_Model_INS.

Yahyaoui, H., El-Qurna, J. & Almulla, M. (2020). Specification and recognition of service trust
behaviors. Kuwait Journal of Science, 47(1).

Zhang, F., Khomh, F., Zou, Y. & Hassan, A. E. (2012). An Empirical Study of the Effect of File
Editing Patterns on Software Quality. 2012 19th Working Conference on Reverse Engineering,
15-18 Oct. 2012 2012. 456-465.

Zhang, W., Cheung, S. C., Chen, Z., Zhou, Y. & Luo, B. (2019). File-level socio-technical
congruence and its relationship with bug proneness in OSS projects. Journal of Systems and
Software, 156: 21-40.

Zhang, W., Zhang, Q., Yu, B. & Zhao, L. (2014). Knowledge map of creativity research based
on keywords network and co-word analysis, 1992–2011. Quality & Quantity, 49.

Zhang, W., Chen, Z., & Luo, B. (2018). Does Socio-Technical Congruence Have an Effect on
Continuous Integration Build Failures? An Empirical Study on 10 GitHub Projects. Paper
presented at the 2018 IEEE International Conference on Software Quality, Reliability and Security
(QRS).

Submitted: 24/02/2020
Revised: 23/10/2020
Accepted: 16/11/2020
DOI: 10.48129/kjs.v49i1.9240

43

