

RLS algorithm over the RLS, and FFRLS algorithms, the estimated voltage

| Authors<br>Figures | errors such as Max AE, MAE ad RMSE are analyzed. The results demonstrated that the value of the estimated voltage RMSEs using the MAFF-RLS algorithm is lesser than of the voltage RMSEs using RLS and FFRLS algorithms. |                                      |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| References         | Published in: 2021 IEEE 12th Energy<br>Asia (ECCE-Asia)                                                                                                                                                                  | Conversion Congress & Exposition -   |  |
| Keywords           |                                                                                                                                                                                                                          |                                      |  |
| Metrics            | Date of Conference: 24-27 May 2021                                                                                                                                                                                       | INSPEC Accession Number:<br>20854575 |  |
|                    | Date Added to IEEE Xplore: 13 July                                                                                                                                                                                       | 2000-010                             |  |
| More Like This     | 2021                                                                                                                                                                                                                     | DOI: 10.1109/ECCE-                   |  |
| Footnotes          | ▶ ISBN Information:                                                                                                                                                                                                      | Asia49820.2021.9479079               |  |
|                    |                                                                                                                                                                                                                          | Publisher: IEEE                      |  |
|                    | ▶ ISSN Information:                                                                                                                                                                                                      | Conference Location: Singapore,      |  |
|                    |                                                                                                                                                                                                                          | Singapore                            |  |
|                    | Funding Agency:                                                                                                                                                                                                          |                                      |  |

Contents

## I. Introduction

With the rise in the demand of the EV in the market, the need for a suitable energy storage system (ESS) is drastically increasing. Several types of ESSs are available in the market however, only a few of them can fulfill the requirement of EV [1]. The Lithiumion battery (LIB) is the best suitable candidate of ESS for EV application [2]. The LIBs have a high energy/power density, long cycle life, no memory effect, and high C-rate. Though, to operate the battery in a safe operating region, the electronic chip called a battery management system (BMS) is always needed. The basic functions of the BMS are cell balancing, thermal management, control charge/discharge rate, and state estimation. There are four different battery states as the state of charge (SOC) [3], state of energy (SDE\$[69]), istate Conntinuer Reader)) [4] and state of health (SOH) [5] are utilized in BMS. For example, with the accurate battery SOC estimation, the LIBs can be protected from malfunctioning by controlling the charge/discharge rate, overcharging, and deep discharging [6]. The battery SOC can be defined as the ratio of battery residual active material to the total original active material. The SOC estimation method can be broadly classified into two categories, for example, model-based [7] and data-driven method [6]. Over the most recent few years, different filters, and observers have been used for the modelbased SOC estimation [3]. The accuracy of the model-based SOC estimation method depends on the battery modeling method.

| Authors | ~ |
|---------|---|
| Figures | ~ |

References

IEEE websites place cookies on your device to give you the best user experience. By using our websites,

Lyeangageeeatoetoesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesplateesp

Accept & Close

Ś

|             | ~     |
|-------------|-------|
| Footnotes V | <br>~ |

| IEEE Personal Account       | <b>Purchase Details</b> | Profile Information           | Need Help?                      | Follow |
|-----------------------------|-------------------------|-------------------------------|---------------------------------|--------|
| CHANGE<br>USERNAME/PASSWORD | PAYMENT OPTIONS         | COMMUNICATIONS<br>PREFERENCES | US & CANADA: +1 800 678<br>4333 | f in 🛩 |
|                             | DOCUMENTS               | PROFESSION AND<br>EDUCATION   | WORLDWIDE: +1 732 981<br>0060   |        |
|                             |                         | TECHNICAL INTERESTS           | CONTACT & SUPPORT               |        |

## About IEEE *Xplore* | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | IEEE Ethics Reporting 🗹 | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

© Copyright 2022 IEEE - All rights reserved.

| IEEE Account               | Purchase Details           | Profile Information          | Need Help?                     |
|----------------------------|----------------------------|------------------------------|--------------------------------|
| » Change Username/Password | » Payment Options          | » Communications Preferences | » US & Canada: +1 800 678 4333 |
| » Update Address           | » Order History            | » Profession and Education   | » Worldwide: +1 732 981 0060   |
|                            | » View Purchased Documents | » Technical Interests        | » Contact & Support            |

About IEEE Xplore | Contact Us | Help | Accessibility | Terms of Use | Nondiscrimination Policy | Sitemap | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2022 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IEEE websites place cookies on your device to give you the best user experience. By using our websites, Lyeaugagueestpethesplacement of these cookies. To learn more, read our Privacy Policy.