Master of Computer Science (Applied Computing) Proposed Research Titles Semester 1, 2024/25

Supervisor	Assoc. Prof. Dr. Amirrudin Kamsin
Name	
Email	amir@um.edu.my
Research	AI/IOT
Area	
Research	"Smart Health Monitoring System: Leveraging IoT and AI for Real-Time
Title	Patient Insights"
Brief	This dissertation aims to design and develop a smart health monitoring
Description	system that utilizes Internet of Things (IoT) devices and artificial
	intelligence (AI) to provide real-time insights into patient health metrics.
	The system will collect data from wearable sensors, process it through AI
	algorithms, and deliver actionable feedback to both patients and
	healthcare providers.

Supervisor	Assoc. Prof. Dr. Amirrudin Kamsin
Name	
Email	amir@um.edu.my
Research	Blockchain, Information Security
Area	
Research	Blockchain for Secure Digital Identity: Enhancing Privacy and Trust in
Title	Online Transactions
Brief	Description: This dissertation will explore the implementation of
Description	blockchain technology to create a secure digital identity framework. The
	study will focus on developing a decentralized application (dApp) that
	allows users to manage their digital identities while ensuring privacy and
	trust in online transactions. Expected Outcomes: • A functioning App that
	demonstrates secure identity management. • A comparative analysis of
	traditional versus blockchain-based identity solutions. • Guidelines for
	stakeholders on adopting blockchain for digital identity verification.

Supervisor	Assoc. Prof. Dr. Amirrudin Kamsin
Name	
Email	amir@um.edu.my

Research	AR, Multimedia, Learning Technology
Area	
Research	Augmented Reality in Education: A Study on Enhancing Learning
Title	Outcomes through Immersive Experiences
Brief	Description: This dissertation will investigate the impact of augmented
Description	reality (AR) on educational practices by developing an AR application
	designed for interactive learning experiences. The study will assess how
	AR can enhance engagement, retention, and comprehension in students.
	Expected Outcomes: • An AR application tailored for specific educational
	content. • Empirical data demonstrating the effectiveness of AR in
	improving learning outcomes. • Insights and recommendations for
	educators on incorporating AR into curricula.

Supervisor	Dr. Asmiza Abdul Sani
-	
Name	
Email	asmiza@um.edu.my
Research	Software Framework
Area	
Research	A Conceptual Framework for Low-Code/No-Code Development of AI-
Title	Powered Applications
Brief	This research introduces a conceptual framework designed to enable the
Description	development of AI-powered applications using low-code/no-code
	(LC/NC) platforms. The framework focuses on recommending the
	integration of AI functionalities—such as machine learning models,
	natural language processing, and predictive analytics—into applications
	without requiring extensive programming knowledge. By bridging the
	knowledge gap between AI and software development, this framework
	aims to assist users, from business professionals to novice developers, to
	rapidly develop intelligent applications, enhancing productivity and
	innovation across diverse fields.

Supervisor	Dr. Bryan Raj
Name	
Email	bryanraj15@um.edu.my
Research	Wireless Sensor Networks
Area	
Research	Machine Learning-Based Approaches for Energy Optimization for
Title	wearables WSNs
Brief	Machine Learning-Based Approaches for Energy Optimization in Wearable
Description	Wireless Sensor Networks (WSNs) involve using machine learning (ML)
	techniques to improve energy efficiency in wearable devices, which
	typically have limited power sources such as small batteries. In wearable

WSNs, sensors continuously monitor health metrics, motion, or
environmental conditions, transmitting data wirelessly. The constant need
for communication and data processing can quickly drain energy. ML-
based approaches can help by predicting optimal times for data
transmission, reducing redundant communications, and dynamically
adjusting sensor operations based on usage patterns or environmental
factors. For example, reinforcement learning can enable wearable devices
to adapt their energy consumption in real-time, while unsupervised
learning can optimize data aggregation and feature selection to minimize
energy usage. These methods allow wearable WSNs to function longer
without needing frequent recharging, enhancing their usability for health
monitoring, fitness tracking, and medical diagnostics. The integration of
ML also enables personalized energy management by learning individual
user behavior, thus tailoring the system's operation for maximum
efficiency. This approach is crucial as wearable technology advances and
demands energy-efficient solutions to support long-term, uninterrupted
usage.

Supervisor	Dr. Burhan Ul Islam Khan
Name	
Email	burhankhan@um.edu.my
Research	Cybersecurity
Area	
Research	Design and Deployment of a Zero Trust Model for Secure Enterprise Data
Title	Access
Brief	The project will involve designing and deploying a robust Zero Trust model
Description	tailored to an enterprise environment, ensuring strict authentication and
	authorization for all data access requests. Key elements include multi-
	factor authentication (MFA), role-based access controls (RBAC), real-time
	monitoring, and micro-segmentation of the network. By deploying this
	model, enterprises can minimize their attack surface, protect against
	unauthorized access, and safeguard critical data assets from evolving
	cybersecurity threats. The ultimate goal is to enhance the security,
	resilience, and trustworthiness of enterprise data access systems, making
	them more resistant to breaches and cyber-attacks.

Supervisor	Prof. Dr. Loo Chu Kiong
Name	
Email	ckloo.um@um.edu.my
Research	Artificial Intelligence
Area	

Research	Freight Routing Optimization using Machine Learning
Title	
Brief	The goal of this proposal is to develop a machine learning-based solution
Description	to optimize freight routing, which will improve logistics efficiency, reduce operational costs, and minimize environmental impact by reducing fuel consumption and emissions. The proposed system will analyze and predict optimal freight routes, taking into account factors such as traffic patterns, fuel costs, weather conditions, delivery deadlines, and vehicle constraints.

Supervisor	Prof. Dr. Loo Chu Kiong
Name	
Email	ckloo.um@um.edu.my
Research	AI
Area	
Research	Early myocardial infarction detection over multi-view echocardiography
Title	
Brief	Myocardial infarction (MI) is the world's leading cause of death, and its
Description	early detection can help reduce myocardial damage through timely
	treatment. The earliest indication of MI is the regional wall motion
	abnormality (RWMA) in ischemic myocardial segments, which can be
	observed with echocardiography. However, assessing RWMA from a single
	echocardiographic view may result in missed MI diagnoses, as the
	abnormality may not be visible in that specific view. To address this, our
	study proposes combining apical 4-chamber (A4C) and apical 2-chamber
	(A2C) views, allowing for the analysis of 12 myocardial segments to
	improve MI detection.

Supervisor	Prof. Dr. Loo Chu Kiong
Name	
Email	ckloo.um@um.edu.my
Research	AI
Area	
Research	Autonomous robotic ultrasound system for thyroid scanning
Title	
Brief	Thyroid ultrasounds currently depend largely on the sonographer's
Description	experience and skill, as well as the radiologist's expertise, making the
	process both physically and mentally demanding. This paper presents a
	fully autonomous robotic ultrasound system capable of independently
	scanning thyroid areas and identifying malignant nodules. The system
	uses human skeleton point recognition, reinforcement learning, and force
	feedback to overcome challenges in accurately locating thyroid targets.

Suparvisor	Assoc. Prof. Dr. Kasturi Dewi Varathan
Supervisor	
Name	
Email	kasturi@um.edu.my
Research	Social Media Analytics
Area	
Research	Explainable Depression Detection using Large Language Model
Title	
Brief	Explainable Depression Detection using Large Language Models: This
Description	project focuses on leveraging large language models (LLMs) to detect
	signs of depression in user-generated text while emphasizing
	explainability. The goal is not only to accurately identify potential
	depressive symptoms but also to provide clear, interpretable insights into
	the model's decision-making process. By incorporating explainability, this
	project aims to increase trust and transparency in AI systems, ensuring
	that mental health professionals and users can understand the rationale
	behind the detected patterns.

Supervisor	Assoc. Prof. Dr. Kasturi Dewi Varathan
Name	
Email	kasturi@um.edu.my
Research	Text Mining
Area	
Research	Cyberbullying Detection in Online Social Media
Title	
Brief	Cyberbullying Detection in Online Social Media Using Psycholinguistic
Description	Characteristics: This research aims to develop a robust system for detecting cyberbullying across social media platforms by analyzing psycholinguistic features in user-generated content. The focus will be on identifying harmful behaviors such as harassment, threats, and abusive language using advanced text mining and natural language processing (NLP) techniques. By exploring psycholinguistic traits—such as tone, emotional expression, and cognitive patterns—this research seeks to capture the underlying psychological characteristics that differentiate cyberbullying from regular online interactions. It will also investigate how these patterns manifest across different social media platforms, providing insights for better monitoring and prevention strategies

Supervisor Name	Assoc. Prof. Dr. Kasturi Dewi Varathan
Email	kasturi@um.edu.my

Research Area	Information Retrieval
Research Title	Medical Diagnostic based on Large Language Model
Brief Description	This research focuses on developing an intelligent medical diagnostic model that leverages large language models (LLMs) to assist healthcare professionals in diagnosing medical conditions. By analyzing patient symptoms, medical history, and relevant literature, the model can provide insights, suggest potential diagnoses, and recommend further tests or treatments. The aim is to enhance decision-making in clinical settings by improving accuracy and efficiency while reducing the cognitive load on healthcare providers.

Supervisor	Assoc. Prof. Dr. Mumtaz Begum Mustafa
Name	
Email	mumtaz@um.edu.my
Research	Al and Speech Processing
Area	
Research	AI-SMART VOICE ASSISTANT FOR MULTILINGUAL SOCIETIES
Title	
Brief	Voice assistants listen to specific voice commands (in the form of
Description	instruction, or questions) and return relevant information or perform specific functions as requested by the user. While there have been significant developments in monolingual (single language) voice assistants, their ability to recognize multi-lingual voices (many languages) is significantly restricted. This research will develop language a detection model for AI-smart voice assistant in recognizing multiple languages.

Supervisor	Mdm. Nornazlita Hussin
Name	
Email	nazlita@um.edu.my
Research	Virtual Reality, Augmented Reality, User Engagement
Area	
Research	User Engagement in Augmented Reality Games Analyzing Behavioral
Title	Patterns on TikTok
Brief	This research investigates how users interact with AR games on TikTok,
Description	focusing on their engagement behaviors and preferences to understand
	what keeps them involved

Supervisor	Mdm. Nornazlita Hussin
Name	

Email	nazlita@um.edu.my
Research	Augmented Reality
Area	
Research	Augmented Reality on Student Engagement in STEM Education"
Title	
Brief	This study examines how the use of AR tools affects student interest and
Description	participation in STEM subjects, assessing its potential to make learning
	more engaging.

Supervisor	Mdm. Nornazlita Hussin
Name	
Email	nazlita@um.edu.my
Research	Augmented Reality
Area	
Research	Gamifying Learning by Integrating Augmented Reality into TikTok
Title	
Brief	This research looks at how to combine AR with TikTok to create
Description	educational games, aiming to enhance user engagement and make
	learning more enjoyable through social media platforms

Supervisor	Mdm. Nornazlita Hussin
Name	
Email	nazlita@um.edu.my
Research	Augmented Reality
Area	
Research	Assessing the Effectiveness of Augmented Reality in Teaching History
Title	through Interactive Timelines
Brief	This study evaluates how AR can bring historical events to life by allowing
Description	students to interact with virtual timelines, enhancing their understanding
	and retention of historical knowledge.

Supervisor	Mdm. Nornazlita Hussin
Name	
Email	nazlita@um.edu.my
Research	Augmented Reality
Area	
Research	Evaluating Augmented Reality Educational Content on Social Media
Title	Platforms
Brief	This study investigates how augmented reality can be utilized in
Description	educational content on social media, particularly TikTok, to enhance

learning experiences. It aims to analyze the effectiveness of AR features in
making educational material more engaging and accessible for users.

Supervisor	Prof. Dr. Por Lip Yee
Name	
Email	norlin@um odu mu
	porlip@um.edu.my
Research	Information Security
Area	
Research	Crime Detection in Social Media Using Natural Language Processing and
Title	Machine Learning Techniques
Brief	The increasing use of social media platforms has significantly transformed
Description	the way individuals communicate and share information. However, these
	platforms are also frequently exploited for criminal activities such as
	cyberbullying, hate speech, drug trafficking, fraud, and human trafficking.
	The immense volume of content generated daily on platforms like Twitter,
	Facebook, Instagram, and Reddit makes it nearly impossible for manual
	monitoring and moderation of illegal activities. Therefore, developing an
	automated system for detecting criminal activities on social media has
	become critical. This project aims to leverage natural language processing
	(NLP) and machine learning (ML) techniques to build a crime detection
	system that can identify illegal content in real-time, enabling timely
	intervention by authorities and platform moderators. Social media has
	been misused for various criminal activities that pose significant
	challenges to online safety. Cyberbullying, for instance, involves harassing
	or threatening individuals through social platforms, leading to serious
	emotional and psychological harm. Similarly, hate speech spreads
	violence and hatred based on race, religion, or gender, while scams and
	fraud deceive people into financial losses. Platforms such as Instagram
	and Facebook are also frequently used for illegal drug sales and even
	human trafficking. As these platforms continue to evolve, so do the
	methods used by criminals. This project will focus on detecting such
	illegal activities by analyzing text data from social media, using advanced
	machine learning and NLP approaches to understand and classify crime-
	related posts. To detect crimes on social media, large and diverse
	datasets are required. Several datasets are available for this task,
	including the Kaggle Twitter Hate Speech Dataset, which contains labeled
	hate speech and offensive language posts, and a Cyberbullying Dataset
	from Kaggle, which classifies tweets as bullying or non-bullying. Another
	dataset includes discussions on Reddit, where criminal activities may be
	discussed in certain forums. Additionally, the project could utilize a Fake
	News Detection Dataset to identify fraudulent content on platforms, as
	well as a Drugs Trafficking Dataset from DarkNet Markets. These datasets
	will be processed using advanced NLP techniques such as tokenization,

stemming, lemmatization, and feature extraction methods like Term Frequency-Inverse Document Frequency (TF-IDF) and word embeddings. Once the data is processed, machine learning models will be developed and trained to detect criminal activities. A variety of models will be tested, including Support Vector Machines (SVM), Random Forest, Naive Bayes, and deep learning approaches like Long Short-Term Memory (LSTM) and Bidirectional Encoder Representations from Transformers (BERT). These models will be trained to identify patterns in the text that correspond to criminal behavior, with feature extraction techniques helping to improve accuracy. In addition, sentiment analysis and topic modeling will be used to understand the emotional tone and context of the posts. These methods will help to create a comprehensive system for detecting a range of criminal activities in different social media platforms. Evaluating the performance of the crime detection models is a critical aspect of this project. Several evaluation metrics will be used to assess the accuracy and reliability of the models, including accuracy, precision, recall, F1score, and Area Under the Curve (AUC). Precision will measure how well the system can identify relevant crime-related posts, while recall will evaluate how comprehensively it can capture all instances of crime. The F1-score will provide a balanced view of both precision and recall. Additionally, a confusion matrix will be used to visualize the number of correct and incorrect classifications. These metrics will help ensure that the system is robust, accurate, and capable of effectively identi

Supervisor	Dr. Su Moon Ting
Name	
Email	smting@um.edu.my
Research	Machine Learning and Software Design
Area	
Research	An LLM-based teaching assistant for teaching software design
Title	
Brief	Software design is a critical part of the software development process. It
Description	covers the activities and decisions involved in the creation of a software
	system, ranging from software architecture design to code design. Due to
	the vast materials on software design that must be covered, a virtual
	teaching assistant for teaching software design would be beneficial for
	those teaching software design. Currently, there is no virtual teaching
	assistant that leverages large-language models for teaching software
	design. To address this gap, the overall aim of this research is to produce a
	framework for designing and implementing an LLM-based virtual teaching
	assistant for teaching software design.

Supervisor	Dr. Suzan Jabbar Obaiys
Name	
Email	suzan@um.edu.my
Research	Cybersecurity
Area	
Research	Advancements in multimodal low-light image enhancement techniques
Title	for multimedia contents
Brief	The purpose of this study is to understand the theoretical framework of
Description	multimodal to improve low-light photos by calculating illumination maps,
	which are subsequently applied to modify the image's contrast and
	brightness. The Retinex theory, which holds that a picture may be broken
	down into components for illumination and reflectance, is the central idea
	of this approach. This theory is used by the LIME model to distinguish
	between illumination and reflectance, enabling focused improvement of
	the low-light regions. Candidate/s need to apply the multimodal low-light
	image enhancement using programming language.

Supervisor	Dr. Suzan Jabbar Obaiys
Name	
Email	suzan@um.edu.my
Research	Cybersecurity
Area	
Research	Weather Prediction Model Using Random Forest Classifier
Title	
Brief	Traditional forecasting methods often rely on complex numerical models,
Description	which require extensive computational resources and domain expertise.
	In recent years, the advent of ML techniques has provided a promising
	alternative for weather prediction, leveraging historical data to uncover
	patterns and make accurate forecasts. Among these ML approaches, the
	Random Forest algorithm has emerged as a powerful tool due to its ability
	to handle large datasets, mitigate overfitting, and deliver high prediction
	accuracy. This study focuses on developing a weather prediction model
	using the Random Forest classifier and evaluates its performance using
	historical weather data.